【ACWing】1134. 最短路计数

该博客介绍了如何使用BFS(广度优先搜索)算法解决无向无权图中从顶点1到其他所有顶点的不同最短路径数量的问题。在给定的N个顶点和M条边的图中,通过BFS遍历并记录每个节点的最短路径条数,最终得出每个顶点的答案。代码中展示了具体的实现细节,包括邻接表的构建和最短路径计数的更新策略。整个算法的时间复杂度为O(N)。

题目地址:

https://www.acwing.com/problem/content/1136/

给出一个 N N N个顶点 M M M条边的无向无权图,顶点编号为 1 1 1 N N N。问从顶点 1 1 1开始,到其他每个点的最短路有几条。

输入格式:
第一行包含 2 2 2个正整数 N , M N,M N,M,为图的顶点数与边数。接下来 M M M行,每行两个正整数 x , y x,y x,y,表示有一条顶点 x x x连向顶点 y y y的边,请注意可能有自环与重边。

输出格式:
输出 N N N行,每行一个非负整数,第 i i i行输出从顶点 1 1 1到顶点 i i i有多少条不同的最短路,由于答案有可能会很大,你只需要输出对 100003 100003 100003取模后的结果即可。如果无法到达顶点 i i i则输出 0 0 0

数据范围:
1 ≤ N ≤ 1 0 5 1≤N≤10^5 1N105
1 ≤ M ≤ 2 × 1 0 5 1≤M≤2×10^5 1M2×105

思路是BFS。由于边权都是 1 1 1,所以可以直接BFS求每个点的最短路。当某个点 x x x第一次被其某个前驱 v v v走到的时候,说明找到了一条最短路,直接赋值该点的最短路条数 c [ x ] c[x] c[x] c [ v ] c[v] c[v](如果 c [ x ] c[x] c[x]一开始赋值为 0 0 0的话,那这里等价于累加 c [ v ] c[v] c[v]);如果某个点 x x x的最短路距离等于其某个前驱 v v v的最短路距离加 1 1 1,那么说明又找到若干个经过另一个前驱的路径到达 x x x是一样近的,则将 c [ v ] c[v] c[v]累加到 c [ x ] c[x] c[x]上去。结合BFS树来理解会更好一些,这个过程相当于在BFS树上按拓扑序来求每个点的最短路条数。代码如下:

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;

const int N = 100010, M = 400010, mod = 100003;
int n, m;
int h[N], e[M], ne[M], idx;
int dist[N], cnt[N];

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void bfs() {
    memset(dist, -1, sizeof dist);
    dist[1] = 0;
    cnt[1] = 1;

    queue<int> q;
    q.push(1);

    while (q.size()) {
        int t = q.front();
        q.pop();

        for (int i = h[t]; ~i; i = ne[i]) {
            int j = e[i];
            // 当点j是第一次访问到的,或者找到通过点t的另一条最短路的时候,就累加最短路条数
            if (dist[j] == -1 || dist[j] == dist[t] + 1) {
                cnt[j] = (cnt[j] + cnt[t]) % mod;
                // 第一次访问到的时候入队,之后再访问到就不入队了
                if (dist[j] == -1) {
                	q.push(j);
	                // 初始化一下距离
                	dist[j] = dist[t] + 1;
				}
            }
        }
    }
}

int main() {
    cin >> n >> m;

	// 邻接表建图
    memset(h, -1, sizeof h);
    while (m--) {
        int a, b;
        cin >> a >> b;
        add(a, b), add(b, a);
    }

    bfs();

    for (int i = 1; i <= n; i++) 
        printf("%d\n", cnt[i]);

    return 0;
}

时空复杂度 O ( N ) O(N) O(N)

### 洛谷 P3384 短路计数问题解决方案 洛谷 P3384 是一道关于短路计数的经典问题。题目要求统计从起点出发到其他各个节点的短路径数目,并确保路径长度相同且路径编号序列不同。 解决此类问题通常采用 Dijkstra 算法或 BFS(广度优先搜索)来实现,具体取决于图中边的权重是否统一。在本题中,所有边的权值为 1,因此可以使用 BFS 来进行短路计数。 #### 解题思路 1. **图的构建**: - 使用邻接表来存储图的结构。 - 图的边是无向的,且每条边的权重为 1。 2. **BFS 搜索**: - 从起点(节点 1)开始进行 BFS。 - 维护一个距离数组 `dist[]`,记录每个节点到起点的短距离。 - 维护一个计数数组 `count[]`,记录到达每个节点的短路径数量。 3. **更新逻辑**: - 如果当前节点的距离大于目标节点的距离,则更新目标节点的距离并重置计数。 - 如果当前节点的距离加上边的权重等于目标节点的距离,则增加目标节点的路径计数。 #### 示例代码 ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e6 + 5; vector<int> adj[MAXN]; int dist[MAXN], count[MAXN]; void bfs(int start, int n) { queue<int> q; memset(dist, -1, sizeof(dist)); dist[start] = 0; count[start] = 1; q.push(start); while (!q.empty()) { int u = q.front(); q.pop(); for (int v : adj[u]) { if (dist[v] == -1) { dist[v] = dist[u] + 1; count[v] = count[u]; q.push(v); } else if (dist[v] == dist[u] + 1) { count[v] = (count[v] + count[u]) % 100000; } } } } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; adj[u].push_back(v); adj[v].push_back(u); } bfs(1, n); for (int i = 1; i <= n; ++i) { cout << count[i] << endl; } return 0; } ``` #### 解释 - **邻接表构建**:通过 `vector<int> adj[MAXN]` 存储图的边关系。 - **BFS 实现**:通过 `queue<int>` 实现 BFS,从起点开始逐层遍历。 - **路径计数**:`count[v]` 记录到达节点 `v` 的短路径数量。如果发现新的短路径,则更新计数;如果发现相同长度的路径,则累加计数。 #### 注意事项 - 需要对计数取模(如 100000)以避免溢出。 - 保证路径编号序列不同,且路径长度相同。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值