题目地址:
https://www.acwing.com/problem/content/1136/
给出一个 N N N个顶点 M M M条边的无向无权图,顶点编号为 1 1 1到 N N N。问从顶点 1 1 1开始,到其他每个点的最短路有几条。
输入格式:
第一行包含
2
2
2个正整数
N
,
M
N,M
N,M,为图的顶点数与边数。接下来
M
M
M行,每行两个正整数
x
,
y
x,y
x,y,表示有一条顶点
x
x
x连向顶点
y
y
y的边,请注意可能有自环与重边。
输出格式:
输出
N
N
N行,每行一个非负整数,第
i
i
i行输出从顶点
1
1
1到顶点
i
i
i有多少条不同的最短路,由于答案有可能会很大,你只需要输出对
100003
100003
100003取模后的结果即可。如果无法到达顶点
i
i
i则输出
0
0
0。
数据范围:
1
≤
N
≤
1
0
5
1≤N≤10^5
1≤N≤105
1
≤
M
≤
2
×
1
0
5
1≤M≤2×10^5
1≤M≤2×105
思路是BFS。由于边权都是 1 1 1,所以可以直接BFS求每个点的最短路。当某个点 x x x第一次被其某个前驱 v v v走到的时候,说明找到了一条最短路,直接赋值该点的最短路条数 c [ x ] c[x] c[x]为 c [ v ] c[v] c[v](如果 c [ x ] c[x] c[x]一开始赋值为 0 0 0的话,那这里等价于累加 c [ v ] c[v] c[v]);如果某个点 x x x的最短路距离等于其某个前驱 v v v的最短路距离加 1 1 1,那么说明又找到若干个经过另一个前驱的路径到达 x x x是一样近的,则将 c [ v ] c[v] c[v]累加到 c [ x ] c[x] c[x]上去。结合BFS树来理解会更好一些,这个过程相当于在BFS树上按拓扑序来求每个点的最短路条数。代码如下:
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 100010, M = 400010, mod = 100003;
int n, m;
int h[N], e[M], ne[M], idx;
int dist[N], cnt[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void bfs() {
memset(dist, -1, sizeof dist);
dist[1] = 0;
cnt[1] = 1;
queue<int> q;
q.push(1);
while (q.size()) {
int t = q.front();
q.pop();
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
// 当点j是第一次访问到的,或者找到通过点t的另一条最短路的时候,就累加最短路条数
if (dist[j] == -1 || dist[j] == dist[t] + 1) {
cnt[j] = (cnt[j] + cnt[t]) % mod;
// 第一次访问到的时候入队,之后再访问到就不入队了
if (dist[j] == -1) {
q.push(j);
// 初始化一下距离
dist[j] = dist[t] + 1;
}
}
}
}
}
int main() {
cin >> n >> m;
// 邻接表建图
memset(h, -1, sizeof h);
while (m--) {
int a, b;
cin >> a >> b;
add(a, b), add(b, a);
}
bfs();
for (int i = 1; i <= n; i++)
printf("%d\n", cnt[i]);
return 0;
}
时空复杂度 O ( N ) O(N) O(N)。
该博客介绍了如何使用BFS(广度优先搜索)算法解决无向无权图中从顶点1到其他所有顶点的不同最短路径数量的问题。在给定的N个顶点和M条边的图中,通过BFS遍历并记录每个节点的最短路径条数,最终得出每个顶点的答案。代码中展示了具体的实现细节,包括邻接表的构建和最短路径计数的更新策略。整个算法的时间复杂度为O(N)。
320

被折叠的 条评论
为什么被折叠?



