【ACWing】1144. 连接格点

题目地址:

https://www.acwing.com/problem/content/1146/

有一个 m m m n n n列的点阵,相邻两点可以相连。一条纵向的连线花费一个单位,一条横向的连线花费两个单位。某些点之间已经有连线了,试问至少还需要花费多少个单位才能使所有的点全部连通。

输入格式:
第一行输入两个正整数 m m m n n n。以下若干行每行四个正整数 x 1 , y 1 , x 2 , y 2 x_1,y_1,x_2,y_2 x1,y1,x2,y2,表示第 x 1 x_1 x1行第 y 1 y_1 y1列的点和第 x 2 x_2 x2行第 y 2 y_2 y2列的点已经有连线。输入保证 ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ = 1 |x_1−x_2|+|y_1−y_2|=1 x1x2+y1y2=1

输出格式:
输出使得连通所有点还需要的最小花费。

数据范围:
1 ≤ m , n ≤ 1000 1≤m,n≤1000 1m,n1000
0 ≤ c ≤ 10000 0≤c≤10000 0c10000 c c c为已经存在的连线数

其实就是规定有些边必选的情况下的最小生成树问题,可以用Kruskal算法,参考https://blog.csdn.net/qq_46105170/article/details/116115619。但是这题的边长只有两种,且是有规律的,所以可以直接先存边长为 1 1 1的边,再存边长为 2 2 2的边,这样可以省掉排序的时间。代码如下:

#include <iostream>
using namespace std;

const int N = 1010, M = N * N, K = 2 * N * N;
int n, m, cnt;
int ids[N][N];
struct Edge {
    int a, b, w;
} e[K];
int p[M];

int find(int x) {
    if (x != p[x]) p[x] = find(p[x]);
    return p[x];
}

void get_edges() {
	// 下标0和2是上下的边,下标1和3是左右的边
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1}, w[4] = {1, 2, 1, 2};
    for (int r = 0; r < 2; r++)
        for (int i = 1; i <= m; i++)
            for (int j = 1; j <= n; j++)
                for (int d = 0; d < 4; d++)
                	// 先添加边长为1的边(上下),后添加边长为2的边(左右)
                    if (d % 2 == r) {
                        int x = i + dx[d], y = j + dy[d];
                        if (1 <= x && x <= m && 1 <= y && y <= n) {
                            int a = ids[i][j], b = ids[x][y];
                            if (a < b) e[cnt++] = {a, b, w[d]};
                        }
                    }
}

int main() {
    cin >> m >> n;
    for (int i = 1, t = 1; i <= m; i++)
        for (int j = 1; j <= n; j++, t++)
            ids[i][j] = t;

    for (int i = 1; i <= m * n; i++) p[i] = i;

    int x1, y1, x2, y2;
    while (cin >> x1 >> y1 >> x2 >> y2) {
        int a = ids[x1][y1], b = ids[x2][y2];
        p[find(a)] = find(b);
    }
    
    get_edges();

    int res = 0;
    for (int i = 0; i < cnt; i++) {
        int pa = find(e[i].a), pb = find(e[i].b);
        if (pa != pb) {
            res += e[i].w;
            p[pa] = p[pb];
        }
    }

    cout << res << endl;

    return 0;
}

时空复杂度 O ( m n ) O(mn) O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值