题目地址:
https://www.acwing.com/problem/content/378/
有两台机器 A A A, B B B以及 K K K个任务。机器 A A A有 N N N种不同的模式(模式 0 ∼ N − 1 0∼N−1 0∼N−1),机器 B B B有 M M M种不同的模式(模式 0 ∼ M − 1 0∼M−1 0∼M−1)。两台机器最开始都处于模式 0 0 0。每个任务既可以在 A A A上执行,也可以在 B B B上执行。对于每个任务 i i i,给定两个整数 a [ i ] a[i] a[i]和 b [ i ] b[i] b[i],表示如果该任务在 A A A上执行,需要设置模式为 a [ i ] a[i] a[i],如果在 B B B上执行,需要模式为 b [ i ] b[i] b[i]。任务可以以任意顺序被执行,但每台机器转换一次模式就要重启一次。求怎样分配任务并合理安排顺序,能使机器重启次数最少。
输入格式:
输入包含多组测试数据。每组数据第一行包含三个整数
N
,
M
,
K
N,M,K
N,M,K。接下来
K
K
K行,每行三个整数
i
i
i,
a
[
i
]
a[i]
a[i]和
b
[
i
]
b[i]
b[i],
i
i
i为任务编号,从
0
0
0开始。当输入一行为
0
0
0时,表示输入终止。
输出格式:
每组数据输出一个整数,表示所需的机器最少重启次数,每个结果占一行。
数据范围:
N
,
M
<
100
,
K
<
1000
N,M<100,K<1000
N,M<100,K<1000
0
≤
a
[
i
]
<
N
0≤a[i]<N
0≤a[i]<N
0
≤
b
[
i
]
<
M
0≤b[i]<M
0≤b[i]<M
可以用二分图建模,左部有 N N N个点,右部有 M M M个点,如果某个任务在两台机器上的模式是 ( a [ i ] , b [ i ] ) (a[i],b[i]) (a[i],b[i]),则连一条边。那么一个方案,等价于选一些点,使得每条边都被覆盖(即每个任务都至少有一个机器去完成它)。而最小点覆盖就等于最大匹配数,可以用匈牙利算法来做。注意,由于一开始两个机器都处于模式 0 0 0,所以任何可以用模式 0 0 0完成的任务都是不需要消耗重启次数的,可以直接略过。代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 110;
int n, m, k;
bool g[N][N], st[N];
int match[N];
bool dfs(int u) {
for (int i = 1; i <= m; i++)
if (!st[i] && g[u][i]) {
st[i] = true;
if (!match[i] || dfs(match[i])) {
match[i] = u;
return true;
}
}
return false;
}
int main() {
while (cin >> n, n) {
cin >> m >> k;
memset(g, 0, sizeof g);
memset(match, 0, sizeof match);
while (k--) {
int t, a, b;
cin >> t >> a >> b;
if (!a || !b) continue;
g[a][b] = true;
}
int res = 0;
for (int i = 1; i <= n; i++) {
memset(st, 0, sizeof st);
if (dfs(i)) res++;
}
cout << res << endl;
}
return 0;
}
时间复杂度 O ( n m ) O(nm) O(nm), n , m n,m n,m分别是图的点数和边数,空间 O ( n ) O(n) O(n)。