【Leetcode】952. Largest Component Size by Common Factor

题目地址:

https://leetcode.com/problems/largest-component-size-by-common-factor/

给定一个长 n n n的非空正整数数组 A A A,考虑一个由 A A A中数字作为顶点的一个图,两个数字 x , y x,y x,y有边相连当且仅当 gcd ⁡ ( x , y ) > 1 \gcd(x,y)>1 gcd(x,y)>1。问该图的最大连通块的元素数。

可以开个并查集,枚举每个数 A [ i ] A[i] A[i],然后将 A [ i ] A[i] A[i]与它的所有素因子union起来(关于素因子分解,可以参考https://blog.csdn.net/qq_46105170/article/details/113813420)。最后只需要看一下含 A A A中数最多的那个连通块里,含多少个 A A A中的数即可。代码如下:

import java.util.HashMap;
import java.util.Map;

public class Solution {
    
    private int[] parent;
    
    private int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        
        return parent[x];
    }
    
    private void union(int x, int y) {
        int px = find(x), py = find(y);
        if (px == py) {
            return;
        }
        
        parent[px] = py;
    }
    
    public int largestComponentSize(int[] A) {
        int max = 0;
        for (int x : A) {
            max = Math.max(max, x);
        }
        
        parent = new int[max + 1];
        for (int i = 0; i < parent.length; i++) {
            parent[i] = i;
        }
        
        for (int x : A) {
        	// 进行素因子分解
            int y = x;
            for (int i = 2; i <= y / i; i++) {
                if (y % i == 0) {
                    while (y % i == 0) {
                        y /= i;
                    }
                    
                    union(x, i);
                }
            }
            
			// 如果y没除尽,那说明y自己就是素数,也需要union起来
            if (y > 1) {
                union(x, y);
            }
        }
        
        int res = 0;
        Map<Integer, Integer> map = new HashMap<>();
        for (int x : A) {
            int px = find(x);
            map.put(px, map.getOrDefault(px, 0) + 1);
        }
    
        for (int cnt : map.values()) {
            res = Math.max(res, cnt);
        }
        
        return res;
    }
}

时间复杂度 O ( max ⁡ A + ∑ A [ i ] + n log ⁡ ∗ n ) O(\max A+\sum \sqrt {A[i]}+n\log ^*n) O(maxA+A[i] +nlogn),空间 O ( max ⁡ A + n ) O(\max A+n) O(maxA+n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值