【ACWing】725. 完全数

这段代码实现了一个判断整数是否为完全数的程序。对于每个输入的整数,它计算除了自身以外的所有约数之和,并检查这个和是否等于原始数。如果相等,该数是完全数,输出"Xisperfect";否则,输出"Xisnotperfect"。程序的时间复杂度为O(sqrt(X)),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

题目地址:

https://www.acwing.com/problem/content/727/

一个整数,除了本身以外的其他所有约数的和如果等于该数,那么我们就称这个整数为完全数。例如, 6 6 6就是一个完全数,因为它的除了本身以外的其他约数的和为 1 + 2 + 3 = 6 1+2+3=6 1+2+3=6。现在,给定你 N N N个整数,请你依次判断这些数是否是完全数。

输入格式:
第一行包含整数 N N N,表示共有 N N N个测试用例。接下来 N N N行,每行包含一个需要你进行判断的整数 X X X

输出格式:
每个测试用例输出一个结果,每个结果占一行。
如果测试数据是完全数,则输出X is perfect,其中 X X X是测试数据。
如果测试数据不是完全数,则输出X is not perfect,其中 X X X是测试数据。

数据范围:
1 ≤ N ≤ 100 1≤N≤100 1N100
1 ≤ X ≤ 1 0 8 1≤X≤10^8 1X108

代码如下:

#include <iostream>
#include <cmath>
using namespace std;

int main() {
    int n;
    cin >> n;
    while (n--) {
        int x;
        cin >> x;
        int sum = 0;
        for (int i = 1; i <= sqrt(x); i++) 
            if (x % i == 0) 
                if(x / i != i) sum += i + x / i;
                else sum += i;
        
        if (sum - x == x) printf("%d is perfect\n", x);
        else printf("%d is not perfect\n", x);
    }

    return 0;
}

每组数据时间复杂度 O ( X ) O(\sqrt X) O(X ),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值