【Leetcode】2192. All Ancestors of a Node in a Directed Acyclic Graph

该博客介绍了如何使用BFS和BitSet数据结构在有向无环图(DAG)中高效地找到每个节点的所有祖先节点。算法通过拓扑排序和并集操作实现,时间复杂度为O((n+m)n),空间复杂度为O(n^2)。博客提供了详细的代码实现和解释。
摘要由CSDN通过智能技术生成

题目地址:

https://leetcode.com/problems/all-ancestors-of-a-node-in-a-directed-acyclic-graph/

给定一个含 n n n个点的有向无环图,每个点编号为 0 , 1 , . . . , n − 1 0,1,...,n-1 0,1,...,n1。对于每个点,求出其所有祖先节点(祖先节点指的是能走到这个点的所有点,不包含其本身),并且要按照点的编号从小到大排序。

可以用BFS版本的拓扑排序。设点 k k k的祖先节点集合为 f ( k ) f(k) f(k),那么对于任意点 v v v,有 f ( v ) = u ∪ ⋃ u → v f ( u ) f(v)=u\cup \bigcup_{u\to v} f(u) f(v)=uuvf(u)。求并集操作可以用BitSet来做,即用or函数。由拓扑排序的性质,在点 v v v入队的时候, v v v的前驱都已经遍历过,从而 v v v的前驱的 f f f值都已经并入 f ( v ) f(v) f(v)。最后对每个顶点 v v v,把 f ( v ) f(v) f(v)具体哪些位置为 1 1 1了求出来即可。代码如下:

import java.util.*;

public class Solution {
    
    int[] h, e, ne;
    int idx;
    
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = h[a];
        h[a] = idx++;
    }
    
    public List<List<Integer>> getAncestors(int n, int[][] edges) {
        h = new int[n];
        Arrays.fill(h, -1);
        int m = edges.length;
        e = new int[m];
        ne = new int[m];
        int[] ind = new int[n];
        for (int[] edge : edges) {
            int a = edge[0], b = edge[1];
            add(a, b);
            // 统计入度
            ind[b]++;
        }
        
        BitSet[] bitSets = new BitSet[n];
        Queue<Integer> q = new LinkedList<>();
        for (int i = 0; i < n; i++) {
            bitSets[i] = new BitSet();
            if (ind[i] == 0) {
                q.offer(i);
            }
        }
        
        while (!q.isEmpty()) {
            int cur = q.poll();
            for (int i = h[cur]; i != -1; i = ne[i]) {
                int ne = e[i];
                ind[ne]--;
                BitSet set = bitSets[ne];
                set.or(bitSets[cur]);
                set.set(cur);
                if (ind[ne] == 0) {
                    q.offer(ne);
                }
            }
        }
        
        List<List<Integer>> res = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            res.add(new ArrayList<>());
            BitSet set = bitSets[i];
            int idx = 0;
            while (set.nextSetBit(idx) != -1) {
                res.get(i).add(set.nextSetBit(idx));
                idx = set.nextSetBit(idx) + 1;
            }
        }
        
        return res;
    }
}

时间复杂度 O ( ( n + m ) n ) O((n+m)n) O((n+m)n) m m m是图的边数,BitSet的or需要 O ( n ) O(n) O(n)),空间 O ( n 2 ) O(n^2) O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值