【Leetcode】1632. Rank Transform of a Matrix

题目地址:

https://leetcode.com/problems/rank-transform-of-a-matrix/

给定一个 m × n m\times n m×n的矩阵 A A A,要求返回一个同样形状的矩阵 B B B,使得 B [ i ] [ j ] B[i][j] B[i][j] A [ i ] [ j ] A[i][j] A[i][j]的rank,rank满足以下几个条件:
1、rank大于等于 1 1 1
2、如果两个元素 p p p q q q同行或者同列,则rank这个映射保序;
3、rank应当尽可能小。

先开一个TreeMap,key是 A A A中元素值,value是该值在 A A A中所有出现的位置。再开一个数组,记录当前每行和每列的rank最大值(如果还未赋值则视为 0 0 0)。接着遍历这个TreeMap,这样一来,所有元素会从小到大遍历到。我们考虑当前遍历到的元素 A [ i ] [ j ] A[i][j] A[i][j]的rank应该是多少。将 m m m行和 n n n列这 m + n m+n m+n个向量视为 m + n m+n m+n个元素,那么由于我们正在给 A [ i ] [ j ] A[i][j] A[i][j]赋予一个rank,所以第 i i i行和第 j j j列这两个向量的最大rank将要变为同一个值。我们开一个 m + n m+n m+n个元素的并查集,将rank将要变为同一个值的那些向量编号union起来,并且每个子集的最大rank取这个子集所覆盖的行和列的全局最大rank。那么给 A [ i ] [ j ] A[i][j] A[i][j]赋予的rank值就是它所在的子集的最大rank + 1。代码如下:

import java.util.*;

public class Solution {
    
    int[] p;
    int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        
        return p[x];
    }
    
    public int[][] matrixRankTransform(int[][] A) {
        if (A.length == 0 || A[0].length == 0) {
            return A;
        }
        
        int m = A.length, n = A[0].length;
        TreeMap<Integer, List<Integer>> map = new TreeMap<>();
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                map.putIfAbsent(A[i][j], new ArrayList<>());
                map.get(A[i][j]).add(i * n + j);
            }
        }
        
        int[] rk = new int[m + n];
        for (Map.Entry<Integer, List<Integer>> entry : map.entrySet()) {
        	// 初始化一个并查集
            p = new int[m + n];
            for (int i = 0; i < p.length; i++) {
                p[i] = i;
            }
    		
            int[] rk2 = rk.clone();
            List<Integer> list = entry.getValue();
            for (int xy : list) {
                int x = xy / n, y = xy % n;
                x = find(x);
                y = find(y + m);
                // 每个子集的最大rank存在其树根的rk2里,也就是说最大rank数组的值只对树根有效
                p[x] = y;
                rk2[y] = Math.max(rk2[x], rk2[y]);
            }
            for (int xy : list) {
                int x = xy / n, y = xy % n;
                rk[x] = rk[y + m] = A[x][y] = rk2[find(x)] + 1;
            }
        }
        
        return A;
    }
}

时间复杂度 O ( m n ( m + n ) log ⁡ ∗ ( m + n ) ) O(mn(m+n)\log^*(m+n)) O(mn(m+n)log(m+n)),空间 O ( m n ) O(mn) O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值