题目地址:
https://leetcode.com/problems/rank-transform-of-a-matrix/
给定一个
m
×
n
m\times n
m×n的矩阵
A
A
A,要求返回一个同样形状的矩阵
B
B
B,使得
B
[
i
]
[
j
]
B[i][j]
B[i][j]是
A
[
i
]
[
j
]
A[i][j]
A[i][j]的rank,rank满足以下几个条件:
1、rank大于等于
1
1
1;
2、如果两个元素
p
p
p和
q
q
q同行或者同列,则rank这个映射保序;
3、rank应当尽可能小。
先开一个TreeMap,key是 A A A中元素值,value是该值在 A A A中所有出现的位置。再开一个数组,记录当前每行和每列的rank最大值(如果还未赋值则视为 0 0 0)。接着遍历这个TreeMap,这样一来,所有元素会从小到大遍历到。我们考虑当前遍历到的元素 A [ i ] [ j ] A[i][j] A[i][j]的rank应该是多少。将 m m m行和 n n n列这 m + n m+n m+n个向量视为 m + n m+n m+n个元素,那么由于我们正在给 A [ i ] [ j ] A[i][j] A[i][j]赋予一个rank,所以第 i i i行和第 j j j列这两个向量的最大rank将要变为同一个值。我们开一个 m + n m+n m+n个元素的并查集,将rank将要变为同一个值的那些向量编号union起来,并且每个子集的最大rank取这个子集所覆盖的行和列的全局最大rank。那么给 A [ i ] [ j ] A[i][j] A[i][j]赋予的rank值就是它所在的子集的最大rank + 1。代码如下:
import java.util.*;
public class Solution {
int[] p;
int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
public int[][] matrixRankTransform(int[][] A) {
if (A.length == 0 || A[0].length == 0) {
return A;
}
int m = A.length, n = A[0].length;
TreeMap<Integer, List<Integer>> map = new TreeMap<>();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
map.putIfAbsent(A[i][j], new ArrayList<>());
map.get(A[i][j]).add(i * n + j);
}
}
int[] rk = new int[m + n];
for (Map.Entry<Integer, List<Integer>> entry : map.entrySet()) {
// 初始化一个并查集
p = new int[m + n];
for (int i = 0; i < p.length; i++) {
p[i] = i;
}
int[] rk2 = rk.clone();
List<Integer> list = entry.getValue();
for (int xy : list) {
int x = xy / n, y = xy % n;
x = find(x);
y = find(y + m);
// 每个子集的最大rank存在其树根的rk2里,也就是说最大rank数组的值只对树根有效
p[x] = y;
rk2[y] = Math.max(rk2[x], rk2[y]);
}
for (int xy : list) {
int x = xy / n, y = xy % n;
rk[x] = rk[y + m] = A[x][y] = rk2[find(x)] + 1;
}
}
return A;
}
}
时间复杂度 O ( m n ( m + n ) log ∗ ( m + n ) ) O(mn(m+n)\log^*(m+n)) O(mn(m+n)log∗(m+n)),空间 O ( m n ) O(mn) O(mn)。