【ACWing】363. B城

题目地址:

https://www.acwing.com/problem/content/description/365/

B B B城有 n n n个城镇, m m m条双向道路。每条道路连结两个不同的城镇,没有重复的道路,所有城镇连通。把城镇看作节点,把道路看作边,容易发现,整个城市构成了一个无向图。

输入格式:
第一行包含两个整数 n n n m m m。接下来 m m m行,每行包含两个整数 a a a b b b,表示城镇 a a a b b b之间存在一条道路。

输出格式:
输出共 n n n行,每行输出一个整数。第 i i i行输出的整数表示把与节点 i i i关联的所有边去掉以后(不去掉节点 i i i本身),无向图有多少个有序点 ( x , y ) (x,y) (x,y),满足 x x x y y y不连通。

数据范围:
n ≤ 100000 , m ≤ 500000 n≤100000,m≤500000 n100000,m500000

对于点 u u u,如果其不是割点,则去掉其所有边后,其余点都连通,那么点对就是 ( u , v ) , ( v , u ) , v ≠ u (u, v),(v, u), v\ne u (u,v),(v,u),v=u,个数为 2 ( n − 1 ) 2(n-1) 2(n1);如果 u u u是割点,则用Tarjan算法,然后看 u u u能割出多少个子树,设能割出 v 1 , . . . , v k v_1,...,v_k v1,...,vk这些子树(不包括 u u u的父亲可能割出的子树),设每个子树的点数为 s [ v i ] s[v_i] s[vi],则以 v i v_i vi为第一维的点对数量是 s [ v i ] ( n − s [ v i ] ) s[v_i](n-s[v_i]) s[vi](ns[vi]),总数为 ∑ i = 1 k s [ v i ] ( n − s [ v i ] ) \sum_{i=1}^k s[v_i](n-s[v_i]) i=1ks[vi](ns[vi]),第一维为 u u u的点对数为 n − 1 n-1 n1,还需要累加一下 u u u的父亲的子树为第一维的点对,为 ( n − 1 − ∑ i = 1 k s [ v i ] ) ( 1 + ∑ i = 1 k s [ v i ] ) (n-1-\sum_{i=1}^k s[v_i])(1+\sum_{i=1}^k s[v_i]) (n1i=1ks[vi])(1+i=1ks[vi]),综上有 ∑ i = 1 k s [ v i ] ( n − s [ v i ] ) + ( n − 1 ) + ( n − 1 − ∑ i = 1 k s [ v i ] ) ( 1 + ∑ i = 1 k s [ v i ] ) \sum_{i=1}^k s[v_i](n-s[v_i])+(n-1)+(n-1-\sum_{i=1}^k s[v_i])(1+\sum_{i=1}^k s[v_i]) i=1ks[vi](ns[vi])+(n1)+(n1i=1ks[vi])(1+i=1ks[vi])个点对。其实如果 u u u不是割点,这个公式也是对的,即此时 ∀ i , s [ v i ] = 0 \forall i, s[v_i]=0 i,s[vi]=0, 上面的公式算出来恰好也是 2 ( n − 1 ) 2(n-1) 2(n1)。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 1e5 + 10, M = 1e6 + 10;
int n, m;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;
int cnt[N];
long res[N];

void add(int a, int b) {
  e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void tarjan(int u, int from) {
  dfn[u] = low[u] = ++timestamp;
  // 记录一下u子树的点数
  cnt[u] = 1;
  
  // 存一下u能割出的子树总点数
  int sum = 0;
  for (int i = h[u]; ~i; i = ne[i]) {
    int v = e[i];
    if (!dfn[v]) {
      tarjan(v, u);
      cnt[u] += cnt[v];
      low[u] = min(low[u], low[v]);
      // 如果u能割出v子树,则累加v子树为第一维的点对数
      if (low[v] >= dfn[u]) {
        res[u] += (long) cnt[v] * (n - cnt[v]);
        // 累加割出的子树的总点数
        sum += cnt[v];
      }
    } else if (v != from) low[u] = min(low[u], dfn[v]);
  }
  
  // 累加一下以u自己为第一维的点对数和以u上面的点为第一维的点对数
  res[u] += (long) (n - 1 - sum) * (1 + sum) + (n - 1);
}

int main() {
  scanf("%d%d", &n, &m);
  memset(h, -1, sizeof h);
  while (m--) {
    int a, b;
    scanf("%d%d", &a, &b);
    add(a, b), add(b, a);
  }

  tarjan(1, 1);
  for (int i = 1; i <= n; i++)
    printf("%ld\n", res[i]);
}

时间复杂度 O ( n + m ) O(n+m) O(n+m),空间 O ( n ) O(n) O(n)

题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值