题目地址:
https://www.acwing.com/problem/content/description/365/
B B B城有 n n n个城镇, m m m条双向道路。每条道路连结两个不同的城镇,没有重复的道路,所有城镇连通。把城镇看作节点,把道路看作边,容易发现,整个城市构成了一个无向图。
输入格式:
第一行包含两个整数
n
n
n和
m
m
m。接下来
m
m
m行,每行包含两个整数
a
a
a和
b
b
b,表示城镇
a
a
a和
b
b
b之间存在一条道路。
输出格式:
输出共
n
n
n行,每行输出一个整数。第
i
i
i行输出的整数表示把与节点
i
i
i关联的所有边去掉以后(不去掉节点
i
i
i本身),无向图有多少个有序点
(
x
,
y
)
(x,y)
(x,y),满足
x
x
x和
y
y
y不连通。
数据范围:
n
≤
100000
,
m
≤
500000
n≤100000,m≤500000
n≤100000,m≤500000
对于点 u u u,如果其不是割点,则去掉其所有边后,其余点都连通,那么点对就是 ( u , v ) , ( v , u ) , v ≠ u (u, v),(v, u), v\ne u (u,v),(v,u),v=u,个数为 2 ( n − 1 ) 2(n-1) 2(n−1);如果 u u u是割点,则用Tarjan算法,然后看 u u u能割出多少个子树,设能割出 v 1 , . . . , v k v_1,...,v_k v1,...,vk这些子树(不包括 u u u的父亲可能割出的子树),设每个子树的点数为 s [ v i ] s[v_i] s[vi],则以 v i v_i vi为第一维的点对数量是 s [ v i ] ( n − s [ v i ] ) s[v_i](n-s[v_i]) s[vi](n−s[vi]),总数为 ∑ i = 1 k s [ v i ] ( n − s [ v i ] ) \sum_{i=1}^k s[v_i](n-s[v_i]) ∑i=1ks[vi](n−s[vi]),第一维为 u u u的点对数为 n − 1 n-1 n−1,还需要累加一下 u u u的父亲的子树为第一维的点对,为 ( n − 1 − ∑ i = 1 k s [ v i ] ) ( 1 + ∑ i = 1 k s [ v i ] ) (n-1-\sum_{i=1}^k s[v_i])(1+\sum_{i=1}^k s[v_i]) (n−1−∑i=1ks[vi])(1+∑i=1ks[vi]),综上有 ∑ i = 1 k s [ v i ] ( n − s [ v i ] ) + ( n − 1 ) + ( n − 1 − ∑ i = 1 k s [ v i ] ) ( 1 + ∑ i = 1 k s [ v i ] ) \sum_{i=1}^k s[v_i](n-s[v_i])+(n-1)+(n-1-\sum_{i=1}^k s[v_i])(1+\sum_{i=1}^k s[v_i]) i=1∑ks[vi](n−s[vi])+(n−1)+(n−1−i=1∑ks[vi])(1+i=1∑ks[vi])个点对。其实如果 u u u不是割点,这个公式也是对的,即此时 ∀ i , s [ v i ] = 0 \forall i, s[v_i]=0 ∀i,s[vi]=0, 上面的公式算出来恰好也是 2 ( n − 1 ) 2(n-1) 2(n−1)。代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1e5 + 10, M = 1e6 + 10;
int n, m;
int h[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;
int cnt[N];
long res[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void tarjan(int u, int from) {
dfn[u] = low[u] = ++timestamp;
// 记录一下u子树的点数
cnt[u] = 1;
// 存一下u能割出的子树总点数
int sum = 0;
for (int i = h[u]; ~i; i = ne[i]) {
int v = e[i];
if (!dfn[v]) {
tarjan(v, u);
cnt[u] += cnt[v];
low[u] = min(low[u], low[v]);
// 如果u能割出v子树,则累加v子树为第一维的点对数
if (low[v] >= dfn[u]) {
res[u] += (long) cnt[v] * (n - cnt[v]);
// 累加割出的子树的总点数
sum += cnt[v];
}
} else if (v != from) low[u] = min(low[u], dfn[v]);
}
// 累加一下以u自己为第一维的点对数和以u上面的点为第一维的点对数
res[u] += (long) (n - 1 - sum) * (1 + sum) + (n - 1);
}
int main() {
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m--) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
tarjan(1, 1);
for (int i = 1; i <= n; i++)
printf("%ld\n", res[i]);
}
时间复杂度 O ( n + m ) O(n+m) O(n+m),空间 O ( n ) O(n) O(n)。