题目地址:
https://leetcode.com/problems/minimum-sideway-jumps/description/
给定一条宽为 3 3 3的路,可以视为三条平行线,给定一个长 n + 1 n+1 n+1的数组 A A A, A [ i ] = 0 A[i]=0 A[i]=0表示位置 i i i无障碍物, A [ i ] = k > 0 A[i]=k>0 A[i]=k>0表示位置 i i i的第 k k k条线有障碍物。一只青蛙在位置 0 0 0的第二条平行线出发,可以以代价 0 0 0向右跳一步,也可以以代价 1 1 1变线,只是不能跳到障碍物上。题目保证 A [ 0 ] = A [ n ] = 0 A[0]=A[n]=0 A[0]=A[n]=0,问要跳到位置 n n n的最小代价。
可以将所有位置看成是图上的点,代价视为边权,则代价只有 0 , 1 0,1 0,1两种,从而是一个 01 01 01图上的最短路问题,可以用双端队列BFS来做,参考https://blog.csdn.net/qq_46105170/article/details/114667171。代码如下:
class Solution {
public:
using PII = pair<int, int>;
int minSideJumps(vector<int>& obstacles) {
int n = obstacles.size() - 1;
deque<PII> dq;
dq.push_back({0, 2});
bool vis[n + 1][3];
memset(vis, 0, sizeof vis);
int dist[n + 1][3];
memset(dist, 0x3f, sizeof dist);
dist[0][1] = 0;
while (dq.size()) {
auto t = dq.front();
dq.pop_front();
int x = t.first, y = t.second;
if (x == n) return dist[x][y - 1];
if (vis[x][y - 1]) continue;
vis[x][y - 1] = true;
if (obstacles[x + 1] != y && !vis[x + 1][y - 1] &&
dist[x + 1][y - 1] > dist[x][y - 1]) {
dist[x + 1][y - 1] = dist[x][y - 1];
dq.push_back({x + 1, y});
}
for (int k = 1; k <= 3; k++)
if (k != y && k != obstacles[x] && !vis[x][k - 1] &&
dist[x][k - 1] > dist[x][y - 1] + 1) {
dist[x][k - 1] = dist[x][y - 1] + 1;
dq.push_back({x, k});
}
}
return -1;
}
};
时空复杂度 O ( n ) O(n) O(n)。