【Leetcode】1824. Minimum Sideway Jumps

题目地址:

https://leetcode.com/problems/minimum-sideway-jumps/description/

给定一条宽为 3 3 3的路,可以视为三条平行线,给定一个长 n + 1 n+1 n+1的数组 A A A A [ i ] = 0 A[i]=0 A[i]=0表示位置 i i i无障碍物, A [ i ] = k > 0 A[i]=k>0 A[i]=k>0表示位置 i i i的第 k k k条线有障碍物。一只青蛙在位置 0 0 0的第二条平行线出发,可以以代价 0 0 0向右跳一步,也可以以代价 1 1 1变线,只是不能跳到障碍物上。题目保证 A [ 0 ] = A [ n ] = 0 A[0]=A[n]=0 A[0]=A[n]=0,问要跳到位置 n n n的最小代价。

可以将所有位置看成是图上的点,代价视为边权,则代价只有 0 , 1 0,1 0,1两种,从而是一个 01 01 01图上的最短路问题,可以用双端队列BFS来做,参考https://blog.csdn.net/qq_46105170/article/details/114667171。代码如下:

class Solution {
 public:
  using PII = pair<int, int>;
  int minSideJumps(vector<int>& obstacles) {
    int n = obstacles.size() - 1;
    deque<PII> dq;
    dq.push_back({0, 2});
    bool vis[n + 1][3];
    memset(vis, 0, sizeof vis);
    int dist[n + 1][3];
    memset(dist, 0x3f, sizeof dist);
    dist[0][1] = 0;
    while (dq.size()) {
      auto t = dq.front();
      dq.pop_front();
      int x = t.first, y = t.second;
      if (x == n) return dist[x][y - 1];
      if (vis[x][y - 1]) continue;
      vis[x][y - 1] = true;
      if (obstacles[x + 1] != y && !vis[x + 1][y - 1] &&
          dist[x + 1][y - 1] > dist[x][y - 1]) {
        dist[x + 1][y - 1] = dist[x][y - 1];
        dq.push_back({x + 1, y});
      }
      for (int k = 1; k <= 3; k++)
        if (k != y && k != obstacles[x] && !vis[x][k - 1] &&
            dist[x][k - 1] > dist[x][y - 1] + 1) {
          dist[x][k - 1] = dist[x][y - 1] + 1;
          dq.push_back({x, k});
        }
    }

    return -1;
  }
};

时空复杂度 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值