【ACWing】1304. 佳佳的斐波那契

题目地址:

https://www.acwing.com/problem/content/1306/

佳佳对数学,尤其对数列十分感兴趣。在研究完Fibonacci数列后,他创造出许多稀奇古怪的数列。例如用 S ( n ) S(n) S(n)表示Fibonacci前 n n n项和 m o d    m \mod m modm的值,即 S n = ( F 1 + F 2 + … + F n ) m o d    m S_n=(F_1+F_2+…+F_n)\mod m Sn=(F1+F2++Fn)modm,其中 F 1 = F 2 = 1 , F i = F i − 1 + F i − 2 F_1=F_2=1,F_i=F_{i−1}+F_{i−2} F1=F2=1,Fi=Fi1+Fi2。可这对佳佳来说还是小菜一碟。终于,她找到了一个自己解决不了的问题。用 T n = ( F 1 + 2 F 2 + 3 F 3 + … + n F n ) m o d    m T_n=(F_1+2F_2+3F_3+…+nF_n)\mod m Tn=(F1+2F2+3F3++nFn)modm表示Fibonacci数列前 n n n项变形后的和 m o d    m \mod m modm的值。现在佳佳告诉你了一个 n n n m m m,请求出 T n T_n Tn的值。

输入格式:
共一行,包含两个整数 n n n m m m

输出格式:
共一行,输出 T ( n ) T(n) T(n)的值。

数据范围:
1 ≤ n , m ≤ 2 31 − 1 1≤n,m≤2^{31}−1 1n,m2311

暂时不考虑模 m m m。考虑 P n = n S n − T n = ( n − 1 ) F 1 + ( n − 2 ) F 2 + . . . + F n − 1 P n − 1 = ( n − 1 ) S n − 1 − T n − 1 = ( n − 2 ) F 1 + ( n − 3 ) F 2 + . . . + F n − 2 P_n=nS_n-T_n=(n-1)F_1+(n-2)F_2+...+F_{n-1}\\P_{n-1}=(n-1)S_{n-1}-T_{n-1}=(n-2)F_1+(n-3)F_2+...+F_{n-2} Pn=nSnTn=(n1)F1+(n2)F2+...+Fn1Pn1=(n1)Sn1Tn1=(n2)F1+(n3)F2+...+Fn2所以 P n − P n − 1 = F 1 + F 2 + . . . + F n − 1 = S n − 1 P_n-P_{n-1}=F_1+F_2+...+F_{n-1}=S_{n-1} PnPn1=F1+F2+...+Fn1=Sn1。从而 [ P n S n F n + 1 F n ] [ 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 ] = [ P n − 1 S n − 1 F n F n − 1 ] \begin{bmatrix} P_n \\ S_n \\ F_{n+1}\\ F_n \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}=\begin{bmatrix} P_{n-1} \\ S_{n-1} \\ F_n\\ F_{n-1} \end{bmatrix} PnSnFn+1Fn 1000110001110010 = Pn1Sn1FnFn1 F 0 = 0 F_0=0 F0=0,所以 [ P n S n F n + 1 F n ] = [ 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 ] n [ 0 0 1 0 ] \begin{bmatrix} P_n \\ S_n \\ F_{n+1}\\ F_n \end{bmatrix}= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}^n\begin{bmatrix} 0 \\ 0 \\ 1\\ 0 \end{bmatrix} PnSnFn+1Fn = 1000110001110010 n 0010 问题归结为求 P n P_n Pn S n S_n Sn,从而可以用快速幂来做。代码如下:

#include <iostream>
using namespace std;

using ll = long long;

int n, m;
ll a[4][4], res[4][4];
void mult(ll a[][4], ll b[][4]) {
  ll c[4][4] = {0};
  for (int i = 0; i < 4; i++)
    for (int j = 0; j < 4; j++)
      for (int k = 0; k < 4; k++) c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m;
  for (int i = 0; i < 4; i++)
    for (int j = 0; j < 4; j++) a[i][j] = c[i][j];
}

void fast_pow(int n) {
  while (n) {
    if (n & 1) mult(res, a);
    n >>= 1;
    mult(a, a);
  }
}

int main() {
  scanf("%d%d", &n, &m);
  for (int i = 0; i < 4; i++) res[i][i] = 1;
  a[0][0] = a[0][1] = a[1][1] = a[1][2] = a[2][2] = a[2][3] = a[3][2] = 1;
  fast_pow(n);
  ll pn = res[0][2], sn = res[1][2];
  printf("%lld\n", ((n * sn - pn) % m + m) % m);
}

时间复杂度 O ( log ⁡ n ) O(\log n) O(logn),空间 O ( 1 ) O(1) O(1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值