题目地址:
https://leetcode.com/problems/graph-connectivity-with-threshold/
给定一个 n n n个点的无向图,顶点编号 1 ∼ n 1\sim n 1∼n。两个点有连边当且仅当这两个点的编号有一个大于某个非负整数 t t t的公约数。给出 k k k个询问,每次询问两个顶点之间是否有连边,求询问结果。
可以从 t + 1 t+1 t+1开始枚举公约数 d d d,那么 d d d的倍数都有连边。可以用并查集来维护有连边这一性质。代码如下:
class Solution {
public:
vector<bool> areConnected(int n, int td, vector<vector<int>>& qs) {
vector<int> p(n + 1);
for (int i = 1; i <= n; i++) p[i] = i;
function<int(int)> find = [&](int x) -> int {
if (x != p[x]) p[x] = find(p[x]);
return p[x];
};
for (int d = td + 1; d <= n; d++)
for (int k = d * 2; k <= n; k += d) p[find(d)] = p[find(k)];
vector<bool> res;
for (auto& q : qs) {
int x = q[0], y = q[1];
res.push_back(find(x) == find(y));
}
return res;
}
};
时间复杂度 O ( n + k log ∗ n ) O(n+k\log*n) O(n+klog∗n),空间 O ( n ) O(n) O(n)。