【Leetcode】1627. Graph Connectivity With Threshold

题目地址:

https://leetcode.com/problems/graph-connectivity-with-threshold/

给定一个 n n n个点的无向图,顶点编号 1 ∼ n 1\sim n 1n。两个点有连边当且仅当这两个点的编号有一个大于某个非负整数 t t t的公约数。给出 k k k个询问,每次询问两个顶点之间是否有连边,求询问结果。

可以从 t + 1 t+1 t+1开始枚举公约数 d d d,那么 d d d的倍数都有连边。可以用并查集来维护有连边这一性质。代码如下:

class Solution {
 public:
  vector<bool> areConnected(int n, int td, vector<vector<int>>& qs) {
    vector<int> p(n + 1);
    for (int i = 1; i <= n; i++) p[i] = i;

    function<int(int)> find = [&](int x) -> int {
      if (x != p[x]) p[x] = find(p[x]);
      return p[x];
    };

    for (int d = td + 1; d <= n; d++)
      for (int k = d * 2; k <= n; k += d) p[find(d)] = p[find(k)];

    vector<bool> res;
    for (auto& q : qs) {
      int x = q[0], y = q[1];
      res.push_back(find(x) == find(y));
    }
    return res;
  }
};

时间复杂度 O ( n + k log ⁡ ∗ n ) O(n+k\log*n) O(n+klogn),空间 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值