【Leetcode】2317. Maximum XOR After Operations

文章讨论了如何在给定整数数组A中,通过异或操作最大化A[0]与A[1]...A[n-1]的异或结果。通过理解每位的异或规则,发现只需对数组进行按位或操作即可得到答案。算法的时间复杂度为O(n),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

题目地址:

https://leetcode.com/problems/maximum-xor-after-operations/description/

给定一个长 n n n数组 A A A,允许将每个数 A [ i ] A[i] A[i]变为 A [ i ] & ( A [ i ] ∧ x ) A[i]\& (A[i]\land x) A[i]&(A[i]x),其中 x x x任取。问能得到的 A [ 0 ] ∧ A [ 1 ] ∧ . . . ∧ A [ n − 1 ] A[0]\land A[1]\land ...\land A[n-1] A[0]A[1]...A[n1]的最大值。

考虑一个二进制位 s s s,如果 s = 0 s=0 s=0,那么 s & ( s ∧ x ) = 0 s\&(s\land x)=0 s&(sx)=0;如果 s = 1 s=1 s=1,那么 s & ( s ∧ x ) s\&(s\land x) s&(sx)可以等于 0 0 0也可以等于 1 1 1。我们尽量想让异或和每一位都变成 1 1 1,如果某一位所有的 A [ i ] A[i] A[i]都是 0 0 0,那这一位无论怎么变都是 0 0 0;否则就能成为 1 1 1。所以答案就是将 A [ i ] A[i] A[i]做或运算即可。代码如下:

class Solution {
 public:
  int maximumXOR(vector<int>& nums) {
    int res = 0;
    for (int x : nums) res |= x;
    return res;
  }
};

时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值