题目地址:
https://leetcode.com/problems/maximum-xor-after-operations/description/
给定一个长 n n n数组 A A A,允许将每个数 A [ i ] A[i] A[i]变为 A [ i ] & ( A [ i ] ∧ x ) A[i]\& (A[i]\land x) A[i]&(A[i]∧x),其中 x x x任取。问能得到的 A [ 0 ] ∧ A [ 1 ] ∧ . . . ∧ A [ n − 1 ] A[0]\land A[1]\land ...\land A[n-1] A[0]∧A[1]∧...∧A[n−1]的最大值。
考虑一个二进制位 s s s,如果 s = 0 s=0 s=0,那么 s & ( s ∧ x ) = 0 s\&(s\land x)=0 s&(s∧x)=0;如果 s = 1 s=1 s=1,那么 s & ( s ∧ x ) s\&(s\land x) s&(s∧x)可以等于 0 0 0也可以等于 1 1 1。我们尽量想让异或和每一位都变成 1 1 1,如果某一位所有的 A [ i ] A[i] A[i]都是 0 0 0,那这一位无论怎么变都是 0 0 0;否则就能成为 1 1 1。所以答案就是将 A [ i ] A[i] A[i]做或运算即可。代码如下:
class Solution {
public:
int maximumXOR(vector<int>& nums) {
int res = 0;
for (int x : nums) res |= x;
return res;
}
};
时间复杂度 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1)。