题目地址:
https://leetcode.com/problems/number-of-excellent-pairs/description/
给定一个长 n n n数组 A A A,其中两个数 x , y x,y x,y如果满足 x & y x\& y x&y和 x ∧ y x\land y x∧y的二进制位的 1 1 1的总个数大于等于某个给定的正整数 k k k,则说这两个数形成了一个好数对。问好数对的总个数。一个数对可以看做是在 A A A中可重复地挑出两个数所组成的,同一个数可以被挑多次。两个数对不同当且仅当其某一维不同。
首先将 A A A去个重。 x & y x\& y x&y和 x ∧ y x\land y x∧y的二进制位的 1 1 1的总个数其实就等于两个数的二进制位 1 1 1的总个数。可以统计一下二进制位 1 1 1的总个数为 b b b的数字有多少个,得数组 c c c(即 c [ b ] c[b] c[b]为二进制位 1 1 1的个数是 b b b的数字个数),那么答案就是 ∑ i + j ≥ k c [ i ] c [ j ] \sum_{i+j\ge k} c[i]c[j] i+j≥k∑c[i]c[j]代码如下:
class Solution {
public:
using ll = long long;
ll countExcellentPairs(vector<int>& a, int k) {
sort(a.begin(), a.end());
a.erase(unique(a.begin(), a.end()), a.end());
auto f = [](int x) {
#define lowbit(x) (x) & (-x)
int cnt = 0;
while (x) x -= lowbit(x), cnt++;
return cnt;
};
vector<int> cnt(31, 0);
for (int x : a) cnt[f(x)]++;
ll res = 0;
for (int i = 0; i < 31; i++)
for (int j = max(0, k - i); j < 31; j++) res += (ll)cnt[i] * cnt[j];
return res;
}
};
时间复杂度 O ( n log n ) O(n\log n) O(nlogn),空间 O ( 1 ) O(1) O(1)。