【Leetcode】2354. Number of Excellent Pairs

题目地址:

https://leetcode.com/problems/number-of-excellent-pairs/description/

给定一个长 n n n数组 A A A,其中两个数 x , y x,y x,y如果满足 x & y x\& y x&y x ∧ y x\land y xy的二进制位的 1 1 1的总个数大于等于某个给定的正整数 k k k,则说这两个数形成了一个好数对。问好数对的总个数。一个数对可以看做是在 A A A中可重复地挑出两个数所组成的,同一个数可以被挑多次。两个数对不同当且仅当其某一维不同。

首先将 A A A去个重。 x & y x\& y x&y x ∧ y x\land y xy的二进制位的 1 1 1的总个数其实就等于两个数的二进制位 1 1 1的总个数。可以统计一下二进制位 1 1 1的总个数为 b b b的数字有多少个,得数组 c c c(即 c [ b ] c[b] c[b]为二进制位 1 1 1的个数是 b b b的数字个数),那么答案就是 ∑ i + j ≥ k c [ i ] c [ j ] \sum_{i+j\ge k} c[i]c[j] i+jkc[i]c[j]代码如下:

class Solution {
 public:
  using ll = long long;
  ll countExcellentPairs(vector<int>& a, int k) {
    sort(a.begin(), a.end());
    a.erase(unique(a.begin(), a.end()), a.end());

    auto f = [](int x) {
#define lowbit(x) (x) & (-x)
      int cnt = 0;
      while (x) x -= lowbit(x), cnt++;
      return cnt;
    };

    vector<int> cnt(31, 0);
    for (int x : a) cnt[f(x)]++;

    ll res = 0;
    for (int i = 0; i < 31; i++)
      for (int j = max(0, k - i); j < 31; j++) res += (ll)cnt[i] * cnt[j];
    return res;
  }
};

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值