题目链接:15. 三数之和
题目:
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:
输入:nums = []
输出:[]
示例 3:
输入:nums = [0]
输出:[]
提示:
- 0 <= nums.length <= 3000
- -105 <= nums[i] <= 105
思路和算法:
拿示例1中的nums数组来举例,首先将数组排序,然后有一层for循环,i 从下标0的地方开始,同时定一个下标left 定义在 i+1 的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i] b = nums[left] c = nums[right]。接下来如何移动left 和right呢, (1)如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些;(2)如果 nums[i] + nums[left] + nums[right] < 0 说明 此时三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
此时的时间复杂度:
O
(
n
2
)
O(n^2)
O(n2)。
代码(c++):
//双指针
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end()); //对数组排序
for (int i = 0; i < nums.size(); ++i) { //遍历数组
//第一个元素就大于零,则一定不存在三个元素相加等于零的情况
if (nums[i] > 0) {
return res;
}
//对元组第一个元素 a 去重
//一定要加上i > 0,防止漏掉{-1, -1, 2}
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1; //第二个元素 b
int right = nums.size() - 1; //第三个元素 c
while (left < right) {
//三个元素和大于零,第三个元素值太大,需要往左移
if (nums[i] + nums[left] + nums[right] > 0) {
right--;
//去除不合适的元素 c
while (left < right && nums[right] == nums[right + 1]) right--;
}
else if (nums[i] + nums[left] + nums[right] < 0) {
left++;
//去除不合适的元素 b
while (left < right && nums[left] == nums[left - 1]) left++;
}
else {
res.push_back(vector<int> { nums[i], nums[left], nums[right] });
//防止三元组重复
while (left < right && nums[right] == nums[right - 1]) right--;
while (left < right && nums[left] == nums[left + 1]) left++;
//找到元组后指针收缩
right--;
left++;
}
}
}
return res;
}
};
感想:
这题绝对是我想不到的做法,逻辑复杂,看随想录题解捋了两遍终于懂了!我保准,下次再遇到这题,我还是不会做,但是至少能有个印象用双指针,用哈希表难以一步到位,在面试中容易出各种bug。