2020年1月4日 林大OJ习题 GCD&LCM与快速幂取模

2020年1月4日 GCD&LCM与快速幂取模

林大OJ 1077 最大公约数与最小公倍数

模板题,背就完事了。

#include <bits/stdc++.h>

using namespace std;

int gcd(int a,int b){
    if(b==0) return a;
    else return gcd(b,a%b);
}

int Lcm(int a,int b){
    return a/gcd(a,b)*b;
}

int main()
{
    int a,b;
    while(cin>>a>>b){
        cout<<gcd(a,b)<<" "<<Lcm(a,b)<<endl;
    }
    return 0;
}
也可以直接使用C++中的内置gcd函数,使用方法为__gcd(a,b):
#include <bits/stdc++.h>

using namespace std;

int main()
{
    long long a,b;
    while(cin>>a>>b)
        printf("%lld %lld\n",__gcd(a,b),a/__gcd(a,b)*b);
    return 0;
}

林大OJ 992 又见GCD

#include <bits/stdc++.h>

using namespace std;

int gcd(int a,int b){
    if(b==0) return a;
    else return gcd(b,a%b);
}


int main()
{
    int a,b,c,i;
    while(cin>>a>>b){
        for(i=b+1;;i++){//a一定大于b,所以可以从b+1开始遍历,节省时间
            if(gcd(a,i)==b && i!=b){
                c=i;
                break;
            }
        }
        cout<<c<<endl;
    }
    return 0;
}

林大OJ 764 多个数的最大公约数

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

long long gcd(long long a,long long b){
    return b?gcd(b,a%b):a;
}

int main()
{
    long long n,a[11],i;
    while(cin>>n){
        for(i=1;i<=n;i++)
            cin>>a[i];
        for(i=1;i<=n-1;i++)
            a[i+1]=gcd(a[i],a[i+1]);
        printf("%lld\n",a[n]);
    }
    return 0;
}

林大OJ 765 多个数的最小公倍数

#include <bits/stdc++.h>

using namespace std;

long long gcd(long long a,long long b){
    if(b==0) return a;
    else return gcd(b,a%b);
}

long long Lcm(long long a,long long b){
    return a/gcd(a,b)*b;
}


int main()
{
    long long n,a[11],i;
    while(cin>>n){
        for(i=1;i<=n;i++)
            cin>>a[i];
        for(i=1;i<=n-1;i++)
            a[i+1]=Lcm(a[i],a[i+1]);
        cout<<a[n]<<endl;
    }
    return 0;
}

林大OJ 1221 人见人爱gcd

这道题我只想打他。。
这题要用数学公式推导出gcd(x,y)=gcd(a,b)
从而得到 x² + y² = a²-2 * b * gcd(a,b)
推导过程

#include <bits/stdc++.h>

using namespace std;

long long gcd(long long a,long long b){
    if(b==0) return a;
    else return gcd(b,a%b);
}

long long Lcm(long long a,long long b){
    return a/gcd(a,b)*b;
}


int main()
{
    int t,i;
    long long a,b;
    while(~scanf("%d",&t)){
        while(t--){
            scanf("%lld %lld",&a,&b);
            printf("%d\n",a*a-2*b*gcd(a,b));
        }
    }
    return 0;
}

林大OJ 1411 LCM&GCD

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

ll gcd(ll a,ll b){
    if(b==0) return a;
    else return gcd(b,a%b);
}

ll Lcm(ll a,ll b){
    return a/gcd(a,b)*b;
}


int main()
{
    ios::sync_with_stdio(false);
    ll t,x,i,k,y;
    int ans;
    while(cin>>t){
        while(t--){
            ans=0;
            cin>>x>>y;//假设gcd(k,i)=x,lcm(k,i)=y,则可得:gcd*lcm=k*i,即x*y=k*i
            for(i=x;i<=y;i+=x){//在[x,y]区间内暴力遍历所有i的取值,每次+x(比每次+1要快)
            //每次+x的原因是,由于x是k和i的最大公约数,则i一定是x的倍数,所以只需+x即可
                if((x*y)%i==0){//满足k*i=x*y,则k=x*y/i,首先必须满足(x*y)%i==0
                    k=(x*y)/i;//直接得到k的取值
                    if(Lcm(k,i)==y &&gcd(k,i)==x)//k在[x,y]范围内,并且gcd(k,i)==x,即满足条件
                        ans++;
                }
            }
            cout<<ans<<endl;
        }
    }
    return 0;
}

林大OJ 1669 高木同学的因子

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}

int main()
{
    ios::sync_with_stdio(false);
    ll x,y,i;
    int ans=0;
    cin>>x>>y;
    ll k=gcd(x,y);
    for(i=1;i*i<k;i++){
        if(k%i==0)
            ans+=2;
    }
    if(i*i==k) ans++;
    cout<<ans<<endl;
    return 0;
}

林大OJ 601 快速幂取模

模板题,重在理解。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

ll quickmod(ll a,ll b,ll c){
    int ret=1;
    while(b){
        if(b&1)
            ret=ret*a%c;
        a=a*a%c;
        b/=2;
    }
    return ret;
}

int main()
{
    ll a,b,c;
    while(cin>>a>>b>>c){
        cout<<quickmod(a,b,c)<<endl;
    }
    return 0;
}

★林大OJ 1666 库特的数学题

终于做出来一道库特题了!

方法1:打表递推。

打表找规律,可以发现 a[n]=6*3(n-1),用快速幂求解即可。方法来源于大佬的题解

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
ll n,mod=1e9+7;
ll quickmod(ll a,ll b)
{
    ll s=1;
    while(b)
    {
        if(b&1)s=s*a%mod;
        a=a*a%mod;b=b/2;
    }
    return s;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    printf("%lld\n",6*quickmod(3,n-1)%mod);//注意算出3的n-1次幂,再乘以6之后一定还要再取模!
    return 0;
}
方法2:矩阵快速幂。

方法来源:九度OJ 1081 递推数列
将求递推数列的第n项转化为求矩阵的n-1次幂,并用快速幂缩短运算时间。
很不幸,超时了。以上算法的时间复杂度为O(k), 当k很大时,会TLE。
再次分析题目,会发现递推公式
在这里插入图片描述
进而推出
在这里插入图片描述
问题转化为求
在这里插入图片描述
然后用快速幂求解。

#include <bits/stdc++.h>

using namespace std;

#define mod 1000000007
/*将矩阵p与矩阵q相乘,结果存入p矩阵*/
void Matrix_mul(long long p[2][2],long long q[2][2]){
    int i,j,k;
    long long t[2][2]={0};
    for(i=0;i<=1;i++)
        for(j=0;j<=1;j++)
            for(k=0;k<=1;k++)
                t[i][j]+=p[i][k]*q[k][j];
    for(i=0;i<=1;i++)
        for(j=0;j<=1;j++)
            p[i][j]=t[i][j]%mod;
}

/*计算p矩阵的n次方,结果存入p矩阵*/
void Matrix_cal(long long p[2][2],long long n){
    int i,j;
    long long t[2][2];
    for(i=0;i<=1;i++)
        for(j=0;j<=1;j++)
            t[i][j]=p[i][j];
    if(n==1) return;
    else if(n&1){
        Matrix_cal(p,n-1);
        Matrix_mul(p,t);
    }
    else{
        Matrix_cal(p,n/2);
        Matrix_mul(p,p);
    }
}

int main()
{
    long long n;
    while(~scanf("%lld",&n))
    {
        if(n==1)
            printf("%d\n",6);
        else if(n==2)
            printf("%d\n",18);
        else
        {
            long long matrix[2][2]={{2,3},{1,0}};
            Matrix_cal(matrix,n-2);//计算从1开始的第n项,总共乘了n-2个中间矩阵
            printf("%lld\n",((18*matrix[0][0]%mod)%mod+(6*matrix[0][1]%mod)%mod)%mod);
        }
    }
    return 0;
}

林大OJ 1834 异或方程解的个数

移项n=(n⊕x)+x(⊕表示异或)

可以发现若a的某个二进制位为1,x有2种取值;若a的某个二进制位为0,x有1种取值。

所以只需要计算出a的二进制中1的个数,假设为n,答案就是2^n。

(不用快速幂也行,每次找到n中二进制位为1的地方就直接乘2即可)

先移项:a=x+(a^x),然后看二进制数的某一位,讨论即可发现规律:

    a  x+(a^x)
    1  0+(1^0)==1
    1  1+(1^1)==1
    0  0+(0^0)==0
    0  1+(0^1)==10

可以发现,第四种情况(a==0,x==1)会改变产生进位,改变了a的值,所以排除第四种情况。
综合第三,四种情况,可以发现,如果a的某一位为0的话,那么x对应位只能为0。
再来看第一,第二种情况,我们发现,当a的某一位为1时,x的对应位可以为1,可以为0。
所以,我们只需求出a的二进制数中,有多少个1即可,答案即为2^n
#include <bits/stdc++.h>

using namespace std;

int pre[35],a,k,sum;

int main()
{
    pre[0]=1;
    for(int i=1;i<=30;i++)
        pre[i]=2*pre[i-1];
    while(cin>>a){
        for(int i=1;i<=30;i++)
        if(pre[i]>a){
            k=i-1;
            break;
        }
        sum=0;
        for(int i=0;i<=k;i++){
            if((1<<i)&a)
                sum++;
        }
        cout<<pre[sum]<<endl;
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值