欧拉函数

φ(n):表示1~n中与n互质的数的个数
在这里插入图片描述
证明的过程是基于容斥原理进行的

第一步:去掉1~n中所有p1、p2…pk的倍数
第二步:加上所有第一步去重了的倍数

那么欧拉函数有什么用处呢?
写几个重要的定理
首先同余:两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m。记作:a≡b (mod m)。
欧拉定理:如果a与n互质,则aφ(n)≡1 (mod n)
费马小定理:在欧拉定理的基础之上,如果n是一个质数记为p,则有aφ§≡1 (mod p),进而可以得到ap-1≡1 (mod p)

欧拉函数

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    cin >> n;
    while (n--)
    {
        int a;
        cin >> a;
        int res = a;
        for (int i = 2; i <= a / i; i++)
        {
            if (a % i == 0)
            {
                res = res / i * (i - 1); //注意这里要对公式进行一定的化简,保证公式中没有分数
                while (a % i == 0)
                    a = a / i;
            }
        }
        if (a > 1)
            res = res / a * (a - 1);
        cout << res << endl;
    }
    return 0;
}

筛法求欧拉函数

当 i mod pj == 0时,有φ(pj * i)=pj * φ(i)
当 i mod pj != 0时,有φ(pj * i)=φ(i) * (pj-1)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
int primes[N], cnt; //表示筛的变量
int phi[N];         //存储欧拉函数
bool st[N];         //标记这个一个值有没有被用到过
ll oul(int n)
{
    phi[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        if (!st[i])
        {
            primes[cnt++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j++)
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0)
            {
                phi[primes[j] * i] = phi[i] * primes[j];
                break;
            }
            phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
    ll res = 0;
    for (int i = 1; i <= n; i++)
        res += phi[i];
    return res;
}
int main()
{
    int n;
    cin >> n;
    cout << oul(n) << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值