题目链接:
传送门
题目描述:
有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。
输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。
输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。
输入样例:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
输出样例:
3 40
本题考察的是附加额外条件的Dijkstra算法,原始Dijkstra算法中的关键步骤,是判断当新加入的某结点使得当前最短距离变得更小时,要更新最短路径,否则路径不变。本题中的Dijkstra算法还要求考察路径费用的权值,即使新加入的某结点没有使最短距离变得更短,但如果它能产生相同的最短距离、并且费用最小,还是要更新最短路径。只有当经过新结点的路径比当前最短路径长、或者虽然长度相等但是费用没有减少时,才不更新路径。
样例示意图:
参考代码:
#include <stdio.h>
#include <string.h>
#define INF 65535
int n,m,s,d;
int map[501][501];
int cost[501][501];
int visited[501];
int dist[501];
void init()
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
map[i][j]=INF;
cost[i][j]=INF;
}
}
}
void dijkstra(int s)
{
memset(visited,0,sizeof(visited));
int i,j;
for(i=0;i<n;i++)
dist[i]=map[s][i];
for(i=1;i<n;i++)
{
int min=INF,pos;
for(j=0;j<n;j++)
{
if(visited[j]==0&&dist[j]<min)
{
min=dist[j];
pos=j;
}
}
visited[pos]=1;
for(j=0;j<n;j++)
{
if(visited[j]==0&&dist[j]>dist[pos]+map[pos][j])//原始Dijkstra算法的关键判断。
{
dist[j]=dist[pos]+map[pos][j];//更新最短路径。
cost[s][j]=cost[s][pos]+cost[pos][j];//更新费用。
}
else if(visited[j]==0&&dist[j]==dist[pos]+map[pos][j]&&cost[s][j]>cost[s][pos]+cost[pos][j])//额外条件。
cost[s][j]=cost[s][pos]+cost[pos][j];//更新费用。
}
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&s,&d);
init();
int i,x,y,z,t;
for(i=0;i<m;i++)
{
scanf("%d%d%d%d",&x,&y,&z,&t);
map[x][y]=map[y][x]=z;
cost[x][y]=cost[y][x]=t;
}
dijkstra(s);
printf("%d %d",dist[d],cost[s][d]);
return 0;
}
相信通过前一阶段每一题都写注释的过程,大家应该已经可以自行领悟代码了,这边我也就不再过多地一一添加注释了。
好了,本次的分享就先到这,大家如果有任何疑问或者建议,欢迎在评论区给我留言。感谢大家捧场!