7-9 旅游规划

本文介绍了一个结合最短路径和最低费用的Dijkstra算法应用,旨在找到图中从出发地到目的地的最经济路线。通过输入城市数量、高速公路数量、起点和终点,以及每条高速公路上的长度和费用,利用算法找出最短且费用最低的路径。样例展示了如何处理这种附加条件的Dijkstra算法,并提供了参考代码。
摘要由CSDN通过智能技术生成

题目链接:
传送门

题目描述:
有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

输出样例:
3 40

本题考察的是附加额外条件的Dijkstra算法,原始Dijkstra算法中的关键步骤,是判断当新加入的某结点使得当前最短距离变得更小时,要更新最短路径,否则路径不变。本题中的Dijkstra算法还要求考察路径费用的权值,即使新加入的某结点没有使最短距离变得更短,但如果它能产生相同的最短距离、并且费用最小,还是要更新最短路径。只有当经过新结点的路径比当前最短路径长、或者虽然长度相等但是费用没有减少时,才不更新路径。

样例示意图:
在这里插入图片描述
参考代码:

#include <stdio.h>
#include <string.h>
 
#define INF 65535

int n,m,s,d;
int map[501][501];
int cost[501][501];
int visited[501];
int dist[501];

void init()
{
  int i,j;
  for(i=0;i<n;i++)
  {
  	for(j=0;j<n;j++)
  	 {
  	 	map[i][j]=INF;
  	 	cost[i][j]=INF;
	   }
  }
}

void dijkstra(int s)
{
	memset(visited,0,sizeof(visited));
	int i,j;
	for(i=0;i<n;i++)
	 dist[i]=map[s][i];
	 
	for(i=1;i<n;i++)
	{
		int min=INF,pos;
		for(j=0;j<n;j++)
		{
			if(visited[j]==0&&dist[j]<min)
			{
				min=dist[j];
				pos=j;
			}
		}
		
		visited[pos]=1;
		
		for(j=0;j<n;j++)
		{
			if(visited[j]==0&&dist[j]>dist[pos]+map[pos][j])//原始Dijkstra算法的关键判断。
			 {
			 	dist[j]=dist[pos]+map[pos][j];//更新最短路径。
			 	cost[s][j]=cost[s][pos]+cost[pos][j];//更新费用。
			 }
			else if(visited[j]==0&&dist[j]==dist[pos]+map[pos][j]&&cost[s][j]>cost[s][pos]+cost[pos][j])//额外条件。
			   cost[s][j]=cost[s][pos]+cost[pos][j];//更新费用。
		}
	}
}

int main()
{
	scanf("%d%d%d%d",&n,&m,&s,&d);
	init();
	
	int i,x,y,z,t;
	for(i=0;i<m;i++)
	{
		scanf("%d%d%d%d",&x,&y,&z,&t);
		map[x][y]=map[y][x]=z;
		cost[x][y]=cost[y][x]=t;
	}
	
	dijkstra(s);
    printf("%d %d",dist[d],cost[s][d]);
	return 0;
 } 

相信通过前一阶段每一题都写注释的过程,大家应该已经可以自行领悟代码了,这边我也就不再过多地一一添加注释了。
好了,本次的分享就先到这,大家如果有任何疑问或者建议,欢迎在评论区给我留言。感谢大家捧场!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值