在 Python 中使用类型提示(type hints)可以提高代码的可读性和可维护性,并且在使用支持类型检查的编辑器(如 PyCharm 或 VS Code)时,可以获得更好的自动补全和类型检查功能。
废话不多说,直接上解决方案:
如果在编辑器中你写代码发现没有联想,没有提示,你可以直接在导入 pandas
时引入 DataFrame
类型。
以下是如何在代码中引入 DataFrame
类型提示的示例:
示例代码
import pandas as pd
from pandas import DataFrame
def read_excel_by_rows(file_path: str, sheet_name: int = 0) -> DataFrame:
"""
按行读取 Excel 文件。
参数:
- file_path (str): Excel 文件路径
- sheet_name (int): 工作表索引,默认读取第一个工作表
返回:
- DataFrame: 包含 Excel 数据的 DataFrame
"""
# 读取 Excel 文件
df: DataFrame = pd.read_excel(file_path, sheet_name=sheet_name)
# 按行处理数据
for index, row in df.iterrows():
print(f"Row {index}: {row.to_dict()}")
return df
def read_excel_by_columns(file_path: str, sheet_name: int = 0) -> DataFrame:
"""
按列读取 Excel 文件。
参数:
- file_path (str): Excel 文件路径
- sheet_name (int): 工作表索引,默认读取第一个工作表
返回:
- DataFrame: 包含 Excel 数据的 DataFrame
"""
# 读取 Excel 文件
df: DataFrame = pd.read_excel(file_path, sheet_name=sheet_name)
# 按列处理数据
for column in df.columns:
print(f"Column {column}: {df[column].tolist()}")
return df
# 示例使用
file_path = 'example.xlsx'
df_rows = read_excel_by_rows(file_path)
df_columns = read_excel_by_columns(file_path)
说明
-
导入
DataFrame
类型:from pandas import DataFrame
这行代码从
pandas
库中导入DataFrame
类型,以便在类型提示中使用。 -
在函数签名中使用类型提示:
file_path: str
和sheet_name: int = 0
表示函数参数的类型。-> DataFrame
表示函数的返回值类型是DataFrame
。
-
类型注解:
- 在读取 Excel 文件的部分,使用
df: DataFrame
明确声明变量df
的类型是DataFrame
。
- 在读取 Excel 文件的部分,使用
这样你在调用这个方法之后,再去通过这个返回值去写代码时,就会有相关代码联想提示啦!