3-idiots HDU-4609 FFT

HDU-4609

给你 n 个数,从中任取 3 个数,求这三个数可以组成一个三角形的概率

T ≤ 100 , 3 ≤ n ≤ 1 e 5 , 1 ≤ a i ≤ 1 e 5 T≤100,3≤n ≤1e5,1≤a_i≤1e5 T1003n1e51ai1e5

input

2
4
1 3 3 4
4
2 3 3 4

output

0.5000000
1.0000000

solution

已 给 数 据 看 作 一 个 多 项 式 , 自 乘 后 求 前 缀 和 , 易 得 比 a i 大 的 总 组 合 , 再 减 去 错 误 的 个 数 得 到 可 组 合 成 三 角 形 的 方 案 , 最 后 除 以 C n 3 , 得 到 结 果 。 已给数据看作一个多项式,自乘后求前缀和,易得比 a_i 大的总组合,再减去错误的个数得到可组合成三角形的方案,最后除以C_n^3,得到结果。 aiCn3

code

//Siberian Squirrel
//#include<bits/stdc++.h>
#include<unordered_map>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>

using namespace std;
typedef long long ll;

const double PI = acos(-1);
const double eps = 1e-7;
const int MOD = 3221225473;
const int N = 4e5 + 10;

struct Complex {
    double x, y;
    Complex(double _x, double _y) :x(_x), y(_y) {}
    Complex() {}
    Complex operator + (const Complex & c) {
        return Complex(x + c.x, y + c.y);
    }
    Complex operator - (const Complex &c) {
        return Complex(x - c.x, y - c.y);
    }
    Complex operator * (const Complex &c) {
        return Complex(x * c.x - y * c.y, x * c.y + y * c.x);
    }
} A[N], a[N];

int rev(int id, int len) {
    int ret = 0;
    for(int i = 0; (1 << i) < len; i++) {
        ret <<= 1;
        if(id & (1 << i)) ret |= 1;
    }
    return ret;
}

inline void FFT(Complex* a, int len, int DFT) {
    for(int i = 0; i < len; i++)
        A[rev(i, len)] = a[i];
    for(int s = 1; (1 << s) <= len; s++) {
        int m = (1 << s);
        Complex wm = Complex(cos(DFT * 2 * PI / m), sin(DFT * 2 * PI / m));
        for(int k = 0; k < len; k += m) {
            Complex w = Complex(1, 0);
            for(int j = 0; j < (m >> 1); j++) {
                Complex t = w * A[k + j + (m >> 1)];
                Complex u = A[k + j];
                A[k + j] = u + t;
                A[k + j + (m >> 1)] = u - t;
                w = w * wm;
            }
        }
    }
    if(DFT == -1) for(int i = 0; i < len; i++) A[i].x /= len, A[i].y /= len;
    for(int i = 0; i < len; i++) a[i] = A[i];
    return;
}

inline void Conv(int len){
    FFT(a, len, 1);
    for(int i = 0 ; i < len; ++ i) {
        a[i] = a[i] * a[i];
    }
    FFT(a, len, -1);
}

ll A_s[100010];
ll ans[N], sum[N], vis[N];
int A_len, A_pos;

inline double solve(int n, ll res = 0) {
    memset(vis, 0, sizeof vis);
    for(int i = 0; i < n; ++ i) {
        scanf("%lld", &A_s[i]);
        ++ vis[A_s[i]];
    }

    sort(A_s, A_s + n);

    A_pos = 0;
    int len = A_s[n - 1] + 1;
    while((1 << A_pos) < len) ++ A_pos;
    len = (1 << (A_pos + 1));

    for(int i = 0; i <= len; ++ i) {
        a[i].x = vis[i];
        a[i].y = 0;
    }
    Conv(len);
    for(int i = 0; i < len; ++ i) {
        ans[i] = (ll)(a[i].x + 0.5);
    }
    len = A_s[n - 1] * 2;

    for(int i = 0; i < n; ++ i)
        -- ans[A_s[i] * 2];

    for(int i = 0; i <= len; ++ i)
        ans[i] >>= 1;

    sum[0] = 0;

    for(int i = 1; i <= len; i++) {
        sum[i] = sum[i - 1] + ans[i];
    }

    for(int i = 0; i < n; i++) {
        res += sum[len] - sum[A_s[i]];
        res -= (n - i - 1ll) * i;
        res -= n - 1;
        res -= (n - i - 1ll) * (n - i - 2) / 2;
    }

    ll tot = (ll)n * (n - 1) * (n - 2) / 6;

//    printf("%lf %lf\n", res, tot);

    return 1.0 * res / tot;
}

int main() {
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    int o = 1, n, m;
	scanf("%d", &o);
    while(o --) {
        scanf("%d", &n);
        printf("%.7lf\n", solve(n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值