给你 n 个数,从中任取 3 个数,求这三个数可以组成一个三角形的概率
T ≤ 100 , 3 ≤ n ≤ 1 e 5 , 1 ≤ a i ≤ 1 e 5 T≤100,3≤n ≤1e5,1≤a_i≤1e5 T≤100,3≤n≤1e5,1≤ai≤1e5
input
2
4
1 3 3 4
4
2 3 3 4
output
0.5000000
1.0000000
solution
已 给 数 据 看 作 一 个 多 项 式 , 自 乘 后 求 前 缀 和 , 易 得 比 a i 大 的 总 组 合 , 再 减 去 错 误 的 个 数 得 到 可 组 合 成 三 角 形 的 方 案 , 最 后 除 以 C n 3 , 得 到 结 果 。 已给数据看作一个多项式,自乘后求前缀和,易得比 a_i 大的总组合,再减去错误的个数得到可组合成三角形的方案,最后除以C_n^3,得到结果。 已给数据看作一个多项式,自乘后求前缀和,易得比ai大的总组合,再减去错误的个数得到可组合成三角形的方案,最后除以Cn3,得到结果。
code
//Siberian Squirrel
//#include<bits/stdc++.h>
#include<unordered_map>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const double PI = acos(-1);
const double eps = 1e-7;
const int MOD = 3221225473;
const int N = 4e5 + 10;
struct Complex {
double x, y;
Complex(double _x, double _y) :x(_x), y(_y) {}
Complex() {}
Complex operator + (const Complex & c) {
return Complex(x + c.x, y + c.y);
}
Complex operator - (const Complex &c) {
return Complex(x - c.x, y - c.y);
}
Complex operator * (const Complex &c) {
return Complex(x * c.x - y * c.y, x * c.y + y * c.x);
}
} A[N], a[N];
int rev(int id, int len) {
int ret = 0;
for(int i = 0; (1 << i) < len; i++) {
ret <<= 1;
if(id & (1 << i)) ret |= 1;
}
return ret;
}
inline void FFT(Complex* a, int len, int DFT) {
for(int i = 0; i < len; i++)
A[rev(i, len)] = a[i];
for(int s = 1; (1 << s) <= len; s++) {
int m = (1 << s);
Complex wm = Complex(cos(DFT * 2 * PI / m), sin(DFT * 2 * PI / m));
for(int k = 0; k < len; k += m) {
Complex w = Complex(1, 0);
for(int j = 0; j < (m >> 1); j++) {
Complex t = w * A[k + j + (m >> 1)];
Complex u = A[k + j];
A[k + j] = u + t;
A[k + j + (m >> 1)] = u - t;
w = w * wm;
}
}
}
if(DFT == -1) for(int i = 0; i < len; i++) A[i].x /= len, A[i].y /= len;
for(int i = 0; i < len; i++) a[i] = A[i];
return;
}
inline void Conv(int len){
FFT(a, len, 1);
for(int i = 0 ; i < len; ++ i) {
a[i] = a[i] * a[i];
}
FFT(a, len, -1);
}
ll A_s[100010];
ll ans[N], sum[N], vis[N];
int A_len, A_pos;
inline double solve(int n, ll res = 0) {
memset(vis, 0, sizeof vis);
for(int i = 0; i < n; ++ i) {
scanf("%lld", &A_s[i]);
++ vis[A_s[i]];
}
sort(A_s, A_s + n);
A_pos = 0;
int len = A_s[n - 1] + 1;
while((1 << A_pos) < len) ++ A_pos;
len = (1 << (A_pos + 1));
for(int i = 0; i <= len; ++ i) {
a[i].x = vis[i];
a[i].y = 0;
}
Conv(len);
for(int i = 0; i < len; ++ i) {
ans[i] = (ll)(a[i].x + 0.5);
}
len = A_s[n - 1] * 2;
for(int i = 0; i < n; ++ i)
-- ans[A_s[i] * 2];
for(int i = 0; i <= len; ++ i)
ans[i] >>= 1;
sum[0] = 0;
for(int i = 1; i <= len; i++) {
sum[i] = sum[i - 1] + ans[i];
}
for(int i = 0; i < n; i++) {
res += sum[len] - sum[A_s[i]];
res -= (n - i - 1ll) * i;
res -= n - 1;
res -= (n - i - 1ll) * (n - i - 2) / 2;
}
ll tot = (ll)n * (n - 1) * (n - 2) / 6;
// printf("%lf %lf\n", res, tot);
return 1.0 * res / tot;
}
int main() {
#ifdef ACM_LOCAL
freopen("input", "r", stdin);
freopen("output", "w", stdout);
#endif
int o = 1, n, m;
scanf("%d", &o);
while(o --) {
scanf("%d", &n);
printf("%.7lf\n", solve(n));
}
return 0;
}