内卷能让一个群体的内部变得异常的精致,但是本质上却完完全全没有任何的进步,并且会导致更多没必要的资源浪费以及带来更加激烈的竞争。它是zbzy社会下劳动力过剩的必然现象。
索引
索引类型
MongoDB索引使用B-Tree数据结构
单字段索引
MongoDB支持在文档的单个字段上创建用户定义的升序/降序索引,称为单字段索引(Single Field Index)
对于单个字段索引和排序操作,索引键的排序顺序(即升序或降序)并不重要,因为MongoDB可以在任何方向上遍历索引
复合索引
MongoDB还支持多个字段的用户定义索引,即复合索引(Compound Index)
复合索引中列出的字段顺序具有重要意义。例如,如果复合索引由 { userid: 1, score: -1 } 组成,则索引首先按userid正序排序,然后在每个userid的值内,再在按score倒序排序
其他索引
地理空间索引(Geospatial Index)、文本索引(Text Indexes)、哈希索引(Hashed Indexes)
地理空间索引(Geospatial Index)
为了支持对地理空间坐标数据的有效查询,MongoDB提供了两种特殊的索引:返回结果时使用平面几何的二维索引和返回结果时使用球面 几何的二维球面索引
文本索引(Text Indexes)
MongoDB提供了一种文本索引类型,支持在集合中搜索字符串内容。这些文本索引不存储特定于语言的停止词(例如“the”、“a”、“or”),而将集合中的词作为词干,只存储根词
哈希索引(Hashed Indexes)
为了支持基于散列的分片,MongoDB提供了散列索引类型,它对字段值的散列进行索引。这些索引在其范围内的值分布更加随机,但只支 持相等匹配,不支持基于范围的查询
索引及其管理
查询索引
返回一个集合中的所有索引的数组
db.collection.getIndexes()
创建索引
在集合上创建索引。
db.collection.createIndex(keys, options)
测试例:
单字段索引示例:
对 userid 字段建立索引:
db.testTable.createIndex({userid:1}) {
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
复合索引:
对 userid 和 nickname 同时建立复合索引:
db.testTable.createIndex({userid:1,nickname:-1}) {
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 2,
"numIndexesAfter" : 3,
"ok" : 1
}
移除索引
移除指定索引:
db.collection.dropIndex(index)
使用例:
删除testTable集合中 userid 字段上的升序索引:
db.comment.dropIndex({userid:1})
移除所有索引:
db.collection.dropIndexes()
执行计划
分析查询性能通常使用执行计划来查看查询的情况,如查询耗费的时间、是否基于索引查询等。
那么,通常,我们想知道,建立的索引是否有效,效果如何,都需要通过执行计划查看
db.collection.find(query,options).explain(options)
使用例:
查看根据userid查询数据的情况:
db.comment.find({userid:"1003"}).explain()