- 博客(24)
- 收藏
- 关注
原创 数据库复习
加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其他事务不能更新此数据对象。实体集就是实体的集合,一个实体是实体也是实体集,多个实体同样是实体集。在数据库中,关系是元组的集合,所以关系模式要描写叙述元组的集合,当中包含那些属性,属性来自域,属性与域之间的映射关系。逻辑独立性是指用户的应用程序与数据库的逻辑结构是相互独立的,即,当数据的逻辑结构改变时,用户程序也可以不变。数据库管理系统是建立、运用、管理、控制和维护数据库,并对数据进行统一管理和控制的系统软件。是表示概念关系模型的一种方式。
2024-04-26 00:49:33 270 1
原创 数据挖掘期末背诵
13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70,问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。建⽴数据挖掘库包括以下⼏个步骤:数据收集、数据描述、选择、数据质量评估和数据清理、合 并与整合、构建元数据、加载数据挖掘库、维护数据挖掘库。模型建立好之后,必须评价得到的结果、解释模型的价值,从测试集中得到的准确率只对⽤于建⽴模型的数据有意义。模型建立并经过验证之后,可以有两种主要的使用方法。
2024-04-25 16:25:16 945
原创 信息论背诵版
(2)考虑先从这100个彩球中取出1个红球,再从余下的99个彩球中取出又一个红球,再从余下的98个彩球中取出1个蓝球,这样取得2个红球、1个蓝球的概率为。(1)信源:信源是产生消息和消息序列的源信源输出的消息是随机的、不确定的,有一定的规律性,因此,可以用随机变量或随机矢量等数学模型来表示信源。(2)把概率最小的两个分成一组,较大的一个编为0,较小的一个编为l,并将这两个符号的概率加起来,其结果再与尚未处理过的符号重新按大小排序;熵的单位由自信息量的单位决定,即取决于对数选取的底数,一般选取用以2为底的。
2024-04-25 16:24:09 718
原创 电路与信号复习
重要习题:以往布置的作业题复杂电路分解时应该遵循的原则?将复杂的电路简化成二端口网络的等效电路。二端口网络的等效电路:a)含独立源电路网络最终可以用戴维南定理等效称为电压源串联一个电阻,或用诺顿电路将其等效称为电流源并联一个电阻。B)无源网络最终等效为一个电阻,不过若网络中含有受控源,则等效电阻可能为负值。重要习题:以往布置的作业题第五章:掌握电容/电感的VCR时域方程表达式及其含义。第六章:1零状态/零输入/全响应/瞬态响应/稳态响应/齐次解/强迫响应的定义和彼此关联。
2024-04-19 10:23:01 714
原创 信号期末复习
dB是信号幅度谱和系统幅频响应曲线的纵轴常用的单位,这是个常见的幅度大小表征单位,需要理解它。两个长度为0.5的向量:分别以±Ω等速转动,它们的合成向量就是沿实轴方向酌余弦向量 简沿虚轴方向的信号为零。以角频率为Ω的余弦信号为例,它有具有位于±Ω两处的、幅度各为0.5、相角为零的频率特性。设其中一个结点的电压为零,即可表示出各支路电压,通过VCR关系进而表示出支路电流,代入(n-1)个KCL方程中即可。) cos(ωt)=0.5(ejΩt+e−jΩt) 是有其明确的几何意义(即物理意义)的。
2024-04-19 10:22:18 414
原创 电路分析基础复习
1相量法的地位:该方法是求系统在正弦单频输入时的特解,与时域内直接求特解相比,其优点是避免了时域内的三角函数的计算,而是转化为复指数域下的代数方程计算来代替。集总参数:当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。电阻从广义上来说,都是带电粒子对能量的消耗作用【正消耗和负消耗】,所以,可以这样认为,凡是对电流有影响的,都可以认为是电阻。零输入响应:在零输入情况下,仅由非零初始状态所引起的响应称为零输入响应。
2024-04-19 10:21:29 702
原创 linux期末复习
套接字,是支持TCP/IP的网络通信的基本操作单元,可以看做是不同主机之间的进程进行双向通信的端点,简单的说就是通信的两方的一种约定,用套接字中的相关函数来完成通信过程。1是一种通信机制,凭借这种机制,客户/服务器系统的开发工作既可以在本地单机上进行,也可以跨网络进行,Linux所提供的功能(如打印服务,ftp等)通常都是通过套接字来进行通信的,套接字的创建和使用与管道是有区别的,因为套接字明确地将客户和服务器区分出来,套接字可以实现将多个客户连接到一个服务器。当然,接收端必须时刻做好接收的准备。
2024-04-19 10:19:52 497
原创 随机梯度下降
import numpy as npimport randomimport mathimport matplotlib.pyplot as pltfrom functools import reduceclass Perceptron(object): w = np.array([[1],[1]]) x = np.array([[1, 1], [0, 0], [1, 0], [0, 1]]) t = [1,0,0,0] x1 = np.array(x[:,0]).
2021-11-12 08:56:53 595
原创 强化学习初识
import gym, osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffrom paddle.distribution import Categoricalprint(paddle.__version__)device = paddle.get_device()env = gy.
2021-10-21 17:05:55 128
原创 全连接神经网络
from functools import reduceimport numpy as npimport randomclass ShenJing(object): def __init__(self): self.w = np.array([[random.random(), random.random(), random.random()], [random.random(), random.random(), random.random()], [random..
2021-10-19 11:16:26 96
原创 通过极简方案构建手写数字识别模型
原地址2. 通过极简方案快速构建手写数字识别模型 - 飞桨AI Studio - 人工智能学习实训社区 (baidu.com)#加载飞桨和相关类库from paddle.nn import Linearimport paddle.nn.functional as Fimport osimport numpy as npimport matplotlib.pyplot as pltimport matplotlib.pyplot as pltimport numpy as npfrom.
2021-10-19 10:56:36 337
原创 使用飞桨构建波士顿房价预测模型
#加载飞桨、Numpy和相关类库import paddlefrom paddle.nn import Linearimport paddle.nn.functional as Fimport numpy as npimport osimport randomdef load_data(): # 从文件导入数据 datafile = 'D:\housing.data' data = np.fromfile(datafile, sep=' ', dtype=np.flo.
2021-10-14 17:14:06 242
原创 PAC初识
import numpy as npimport matplotlib.pyplot as pltdata = np.array([[2.5,2.4],[0.5,0.7],[2.2,2.9],[1.9,2.2],[3.1,3.0],[2.3,2.7],[2,1.6],[1,1.1],[1.5,1.6],[1.1,0.9]])e1 = np.mean(data[:,0])e2 = np.mean(data[:,1])x = data[:,0]y = data[:,1]data1=np.ar.
2021-10-07 18:14:56 136 1
原创 HMM初识
import numpy as npwalk = np.array([0.1, 0.6])buy = np.array([0.4, 0.3])wash = np.array([0.5, 0.1])sun = np.array([0.4, 0.6])rain = np.array([0.7, 0.3])sky = np.array([0.6, 0.4])p11 = sky[0] * walk[0]p12 = sky[1] * walk[1]a = ['a','b','c']if ...
2021-09-28 23:15:14 82
原创 欧拉公式再识
import numpy as npimport matplotlib.pyplot as pltk = np.array([1])x=[0]for i in range(1,101,1): a = [i/10] x = np.append(x,a)#x = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2])y = np.array([1])for i in range(0, 100).
2021-09-24 09:44:13 83
原创 and感知器
import numpy as npimport randomimport mathimport matplotlib.pyplot as pltfrom functools import reduceclass Perceptron(object): w = np.array([[1],[1]]) x = np.array([[1, 1], [0, 0], [1, 0], [0, 1]]) t = [1,0,0,0] x1 = np.array(x[:,0]).
2021-09-10 21:56:18 70
原创 焦海洋的Python作业
import numpy as npimport mathimport randomo0 = random.random()o1 = random.random()o2 = random.random()o=np.array([o1,o2])x = np.array([[2, 3], [4, 6], [7, 8], [12, 15]])t = np.array([5, 8, 14, 17])eps = 1e-4e0 = 9e1 = 9e2 = 9while e0 >...
2021-09-03 21:14:11 70
原创 焦海洋的Numpy作业
垂直拆分:numpy.vsplit(数组,份数)->(数组片段)import numpy as npc = np.arange(1,13).reshape(6,2)carray([1,2],[3,4],[5,6],[7,8],[9,10],[11,12])np.vsplit(c,3)[array([[1,2],[3,4],])array([[5,6],[7,8]])array([[9,10],[11,12]])]水平拆分:numpy.hsplit(数组,份数)->(数组片段).
2021-09-03 21:12:49 128
Socket协议 一、实验环境: Windows10系统、pycharm软件
2024-05-08
射频识别通信协议实验 一、实验环境: Windows10系统、pycharm软件
2024-05-08
QAM调制 一、实验环境: Windows10系统、pycharm软件
2024-05-08
FSK调制 一、实验环境: Windows10系统、pycharm软件
2024-05-08
PSK调制 一、实验环境: Windows10系统、pycharm软件
2024-05-08
ASK调制 一、实验环境: Windows10系统、pycharm软件
2024-05-08
实验7 数字签名算法DSS
2024-05-08
实验6 DES 加密算法 实验6 DES 加密算法
2024-05-08
实验五 古典密码算法 实验五 古典密码算法
2024-05-07
实验4 使用Wireshark分析以太网帧与ARP协议
2024-05-07
实验3 利用Wireshark分析DNS协议
2024-05-07
实验2 利用Wireshark分析协议HTTP
2024-05-07
实验1 协议分析软件Wireshark
2024-05-07
数据挖掘期末题 选择填空简答
2024-04-25
Linux实验十三 Uboot和Linux内核配置与编译实验
2024-04-25
Linux实验十二 预作实验 配置编译开发板Linux文件系统
2024-04-25
Linux实验十一 arm-Linux交叉编译环境搭建
2024-04-25
Linux实验十 交叉编译工具链使用
2024-04-25
Linux实验九 shell编程实验(2)
2024-04-25
Linux实验八 shell编程(一)
2024-04-25
Linux实验七 GDB程序调试
2024-04-25
Linux实验 六 GCC程序编译
2024-04-25
linux实验五 MAKEFILE工程管理
2024-04-25
物联网应用系统设计综合实验报告 实验1-4-linux基础
2024-04-25
视频资讯APP系统的开发与设计
2024-04-18
实验三++s50卡识别
2024-04-18
实验三串口应用实验实验三串口应用实验
2024-04-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人