LDA推导(手算)

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LDA(线性判别分析)是一种常用的模式识别和机器学习算法,用于将样本投影到低维空间以实现分类。LDA的决策边界公式可以通过以下步骤推导得到: 1. 假设每个分类服从高斯分布且方差矩阵相同。对于第k个类别,其高斯分布的概率密度函数为: ![equation1](https://latex.codecogs.com/gif.latex?p(x|y=k)&space;=&space;\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}e^{-\frac{1}{2}(x-\mu_k)^T\Sigma^{-1}(x-\mu_k)}) 其中,x是一个d维的样本向量,μk是第k个类别的均值向量,Σ是所有类别的协方差矩阵。 2. 根据贝叶斯定理,我们可以计算后验概率p(y=k|x),即给定样本x的情况下,它属于第k个类别的概率。根据贝叶斯定理,后验概率可以表示为: ![equation2](https://latex.codecogs.com/gif.latex?p(y=k|x)&space;=&space;\frac{p(x|y=k)p(y=k)}{p(x)}) 其中,p(x)是样本x的边缘概率。 3. 为了进行分类,我们可以选择具有最大后验概率的类别。即,对于给定的样本x,我们选择使得p(y=k|x)最大的k值。 4. 为了简化计算,我们可以取对数并忽略与x无关的常数项。这样,我们可以将决策边界表示为: ![equation3](https://latex.codecogs.com/gif.latex?g(x)&space;=&space;\log(p(y=1|x))&space;-&space;\log(p(y=2|x))&space;=&space;x^T\Sigma^{-1}(\mu_1-\mu_2)&space;-&space;\frac{1}{2}(\mu_1^T\Sigma^{-1}\mu_1&space;-&space;\mu_2^T\Sigma^{-1}\mu_2)&space;+&space;\log\left(\frac{p(y=1)}{p(y=2)}\right)) 其中,g(x)是一个关于x的线性函数,决策边界是g(x)=0。 5. 如果我们假设每个类别的先验概率相等(即p(y=1)=p(y=2)),那么决策边界可以进一步简化为: ![equation4](https://latex.codecogs.com/gif.latex?g(x)&space;=&space;x^T\Sigma^{-1}(\mu_1-\mu_2)&space;-&space;\frac{1}{2}(\mu_1^T\Sigma^{-1}\mu_1&space;-&space;\mu_2^T\Sigma^{-1}\mu_2)) 至此,我们推导出了LDA的决策边界公式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值