Google搜索语法(常用篇)

Google是一款十分强大的搜索引擎,黑客们常常借助它搜索网站的一些敏感目录和文件,甚至可以利用它的搜索功能来自动攻击那些有漏洞的网站;而有些人可以通过搜索把某个个人的信息,包括住址、电话号码、出生年月等都可以搜索出来;当然我们在日常的生活中正确的借助Google搜索也可以更加高效的找到我们需要的东西。是信息收集不可或缺的工具

目录

基本逻辑语法(常用)

AND:包含两者

OR:满足一个就会显示

"":不可分割

GOOgle常用的搜索语法

Site:找到与指定网站有联系的URL。

 filetype:搜索指定类型的文件。

 intext:搜索网页正文内容中的指定字符。

inurl:搜索包含有特定字符的URL。

intitle:搜索网页标题中包含有特定字符的网页。



基本逻辑语法(常用)

AND:包含两者

Google默认的语法是AND逻辑,如在搜索“admin password”时,实际上查询的时“admin AND password”,查询到的信息也会包含两者才会显示。

OR:满足一个就会显示

在查询语句的时候,默认的AND是可以不用写出来的。OR逻辑,即,包含一个或者两个的关键字就会显示以下内容。如“admin OR password”

注意:OR是大写的,小写是不起作用的,而且,每一个关键词与“OR”之间是有一个空格的,我们来看一下搜索结果。

"":不可分割

希望搜索“programgoogle”的内容,而不希望这两个单词之间有任何其他的内容,那么就要使用双引号把搜索的内容组成一个词组,如“passwdadmin”

 


 以上较为常用,还有-,+,?,*等。


GOOgle常用的搜索语法

Site:找到与指定网站有联系的URL。

所有和这个网站有联系的URL都会被显示。

 filetype:搜索指定类型的文件。

如输入“filetype:txt admin”,将返回所有以txt结尾的文件URL 名字包含admin的文件

 

(常用来看一些注册信息,个人信息等)

 intext:搜索网页正文内容中的指定字符。

如输入“intext citation apa”。这个语法类似我们平时在某些网站中使用的“文章内容搜索”功能

inurl:搜索包含有特定字符的URL。

如输入“inurl /admin/login.asp”,则可以找到带有/admin/login.asp字符的URL。

intitle:搜索网页标题中包含有特定字符的网页。

如输入“intitle index of login”,这样网页标题中带有index of login的网页都会被搜索出来。

END

             以上都是较常用的基础Google用法,可以快速在Google中找到(获取到)有用的信息。够用就行~~~~

要使用R复现这孟德尔随机化(Mendelian Randomization, MR)分析文章中的结果,可以按照以下步骤进行: ### 1. 安装和加载必要的包 首先,你需要安装并加载一些必要的R包,这些包用于处理GWAS数据和执行MR分析。 ```R install.packages("TwoSampleMR") library(TwoSampleMR) ``` ### 2. 下载和准备GWAS数据 你需要从论文中提到的数据源下载GWAS汇总统计数据,并将其准备好用于MR分析。这里以骨密度(BMD)和骨折为例。 #### 2.1 下载GWAS数据 你可以从以下网站下载GWAS数据: - **骨密度(BMD)**:[GEFOS](http://www.gefos.org/) -epidemiology/) - **精神疾病(MDs)**:[GWAS Catalog](https://www.ebi.ac.uk/gwas/downloads/summary-statistics) 假设你已经下载了这些数据并保存为文件。 #### 2.2 准备GWAS数据 将下载的GWAS数据读入R,并进行预处理。 ```R # 读取GWAS数据 bmd_data <- read.table("path/to/bmd_data.txt", header = TRUE) fracture_data <- read.table("path/to/fracture_data.txt", header = TRUE) schizophrenia_data <- read.table("path/to/schizophrenia_data.txt", header = TRUE) # 进行质量控制 bmd_data <- clump_data(bmd_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) fracture_data <- clump_data(fracture_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) schizophrenia_data <- clump_data(schizophrenia_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) ``` ### 3. 执行两样本MR分析 使用`TwoSampleMR`包中的函数来执行MR分析。 ```R # 获取遗传工具变量 exposure_data <- extract_instruments(schizophrenia_data) # 获取结局数据 outcome_bmd <- harmonise_data(exposure_data, bmd_data) outcome_fracture <- harmonise_data(exposure_data, fracture_data) # 执行MR分析 mr_result_bmd <- mr(outcome_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) mr_result_fracture <- mr(outcome_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) # 查看结果 print(mr_result_bmd) print(mr_result_fracture) ``` ### 4. 结果解释 输出的结果会显示不同方法下的MR估计值及其显著性水平。你可以通过查看`mr_result_bmd`和`mr_result_fracture`来解释结果。 ### 5. 敏感性分析 为了验证结果的稳健性,可以进行敏感性分析。 ```R # 检查异质性和多效性 heterogeneity_test <- mr_heterogeneity(outcome_bmd) pleiotropy_test <- mr_pleiotropy Egger(outcome_bmd) # 查看测试结果 print(heterogeneity_test) print(pleiotropy_test) ``` ### 6. 可视化结果 最后,可以使用`forest_plot`函数绘制森林图来可视化结果。 ```R # 绘制森林图 forest_plot(mr_result_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) forest_plot(mr_result_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) ``` ### 总结 以上步骤可以帮助你在R中复现这文章中的孟德尔随机化分析。确保你正确地下载和处理了所有所需的GWAS数据,并且在每一步都进行了适当的质量控制和数据校正。如果有任何问题或需要进一步的帮助,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

s0ngd0ck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值