蓝桥杯 算法提高 计算超阶乘

42 篇文章 2 订阅
29 篇文章 1 订阅

试题 算法提高 计算超阶乘

提交此题 评测记录

资源限制时间限制:1.0s 内存限制:256.0MB问题描述  计算1*(1+k)(1+2k)(1+3k)(1+n*k-k)的末尾有多少个0,最后一位非0位是多少。输入格式  输入的第一行包含两个整数n, k。输出格式  输出两行,每行一个整数,分别表示末尾0的个数和最后一个非0位。
样例输入
15 2
样例输出
0
5
数据规模和约定  1<=k<=10,1<=n<=1000000。

#include<bits/stdc++.h>
using namespace std;

int dfs(int i,int k)
{
	return 1+i*k;
}

int qulin(long long &a)
{
	int count=0;
	while(a%10==0)
	{
			count++;
		    a/=10;
	}
	return count;
 } 

int main()
{
	int n,k;
	cin>>n>>k;
	int i;
	long long s=1;
	int cns=0,xb=0;
	for(i=0;i<n;i++)
	{
		long long x;
		x=dfs(i,k);
        cns+=qulin(x); 
		s*=x;
		cns+=qulin(s);
		s=s%100000;//重点 
	}
	xb=s%10;
	cout<<cns<<endl;
	cout<<xb<<endl;
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值