三根木桩:
思路:步骤1,将n-1个盘子,从木桩A移动到木桩B;
步骤2,将第n个最大的盘子,从木桩A移动到木桩C;
步骤三,将n-1个盘子,从木桩B移动到木桩C.
package Stack;
import java.io.*;
public class Hanoi {
public static void main(String args[]) throws IOException {
int j;
String str;
BufferedReader Keyin=new BufferedReader(new InputStreamReader(System.in));
System.out.println("请输入盘子的数量:");
str=Keyin.readLine();
j=Integer.parseInt(str);
hanoi(j,1,2,3);
}
public static void hanoi(int n,int p1,int p2,int p3) {
if(n==1)
System.out.println("盘子从"+p1+"移动到"+p3);
else {
hanoi(n-1,p1,p3,p2);
System.out.println("盘子从"+p1+"移动到"+p3);
hanoi(n-1,p2,p1,p3);
}
}
}
四根木桩:
首先我们可以先考虑A柱子上面只有三个盘子的情况,对于A柱子上的三个盘子,我们可以先将一个盘子从A柱子移动到B柱子上面,再将第二个盘子移动到C柱子上面,最后将剩下的一个盘子移动到D柱子上面。其实对于这个过程,我们可以将其看成:首先将A柱子上面的盘子分成了两部分,第一部分上面只有一个盘子,第二部分有两个盘子,我们要做的就是先将第一部分的盘子移动到B(C也可以)柱子上面,然后将剩下的盘子移动到D柱子上面,在将B柱子上面的盘子移动到D柱子上面。
思路:
1,对于A柱子上面有n个盘子的时候,我们可以先将盘子分成k和n-k两个部分
2,将A柱子上面的K个盘子使用Hanoi4方法将其借助C,D柱子移动到B柱子上面
3,将A柱子上面剩下的n-k个盘子使用Hanoi3方法将其借助C柱子移动到D柱子上面
4,将B柱子上面的K个盘子使用Hanoi4方法将其移动到D柱子上面
我们来分析一下算法的时间复杂度:
步骤二的时间复杂度我们记为T(K),Hanoi3问题的时间复杂度为:2^(n-k)-1,所以整个的算法时间复杂度为,其中T(1)=1,
所以我们可以看到时间复杂度与划分的时候的K有关,在这里我们取k=n/2来编写程序:
package Stack;
import java.util.Scanner;
public class Hanoi2 {
private static Scanner sc;
public static void main(String args[])
{
System.out.println("请输入盘子的数量:");
sc = new Scanner(System.in);
int n=sc.nextInt();
char a='A',b='B',c='C',d='D';
Hanoi(a,b,c,d,n);
}
private static void Hanoi(char a, char b, char c, char d, int n) {
if(n==1)
{
System.out.println("将盘子从"+a+"柱子移动到"+d+"柱子");
return;
}
Hanoi(a,c,d,b,n/2);
Hanoi3(a,b,c,d,n-n/2);
Hanoi(b,c,a,d,n/2);
}
private static void Hanoi3(char a, char b, char c, char d, int i) {
if(i==1)
System.out.println("将盘子从"+a+"柱子移动到"+d+"柱子");
else{
Hanoi3(a, b, d, c, i-1);
System.out.println("将盘子从"+a+"柱子移动到"+d+"柱子");
Hanoi3(c, a, b, d, i-1);
}
}
}