Java实现汉诺塔问题

本文详细介绍了如何使用Java实现汉诺塔问题,通过递归法解析移动规律。探讨了汉诺塔问题的移动规则,揭示了与盘子数量奇偶性相关的移动路径,并给出了非递归解法的思路,涉及二维数组的使用。
摘要由CSDN通过智能技术生成

1 问题描述
Simulate the movement of the Towers of Hanoi Puzzle; Bonus is possible for using animation.

e.g. if n = 2 ; A→B ; A→C ; B→C;

  if n = 3; A→C ; A→B ; C→B ; A→C ; B→A ; B→C ; A→C;

翻译:模拟汉诺塔问题的移动规则;获得奖励的移动方法还是有可能的。

相关经典题目延伸:

引用自百度百科:

有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子C上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方,请问至少需要多少次移动,设移动次数为H(n)。

首先我们肯定是把上面n-1个盘子移动到柱子B上,然后把最大的一块放在C上,最后把B上的所有盘子移动到C上,由此我们得出表达式:

H⑴ = 1 A—>C

H(2) = 3 A—>B;A—>C;B—>C

H(3) = 7 …

H(4) = 15

… …

H(n) = 2*H(n-1)+1 (n>1)

那么我们很快就能得到H(n)的一般式:

H(n) = 2^n - 1 (n>0)

2 解决方案

2.1 递归法

import java.util.Scanner;

public class Hanoi {
    
    //使用递归法求解含有n个不同大小盘子的汉诺塔移动路径,参数n为盘子数,把A塔上盘子全部移动到C塔上,B为过渡塔
    public static void recursionHanoi(int n,char A,char B,char C){
        if(n == 1){
            System.out.print(A+"——>"+C+"\n");    
        }
        else{
            recursionHanoi(n-1,A,C,B);         //使用递归先把A塔最上面的n-1个盘子移动到B塔上,C为过渡塔
            System.out.print(A+"——>"+C+"\n");       //把A塔中底下最大的圆盘,移动到C塔上
            recursionHanoi(n-1,B,A,C);         //使用递归把B塔上n-1个盘子移动到C塔上,A为过渡塔
        }
    }

   public static void main(String[] args){
        System.out.println("请输入盘子总数n:");
        Scanner in = new S
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值