题目描述
在斐波那契整数序列中, 对于n≥2,F 0 = 0,F 1 = 1和F n = F n -1 + F n -2 。例如,斐波那契序列的前十项为:
0、1、1、2、3、5、8、13、21、34,…
斐波那契数列的另一个公式是
给定一个整数n,您的目标是计算Fn的最后4位数字。
输入
输入的测试文件将包含多个测试用例。每个测试用例由包含单个线n(其中,0≤的Ñ ≤1,000,000,000)。文件末尾由包含数字-1的单行表示。
输出
对于每个测试用例,请打印Fn的最后四位数字。如果Fn的最后四位全为零,则输出’ 0 ’ ;否则为0 。否则,请省略任何前导零(即,打印Fn mod 10000)。
Tips
提醒一下,矩阵乘法是关联的,两个2×2矩阵的乘积由下式给出:
解题思路
对于C语言定义矩阵乘法函数Matrix和返回Fibonacci数列n项的函数,因为涉及到返回矩阵,这里就可以用数组代替,另若函数设定返回值,返回数值只能是指针函数,因此可在函数参数中再添加一个数组来存要返回的矩阵。另在数乘中会涉及到越界,即超出范围,所以在中间过程取模,即在幂乘函数中取模。对于C++/java/Python等语言可以定义矩阵对象来返回,相比C语言,可以返回一个矩阵对象,简单一些。
代码
#include<stdio.h>
void Matrix(int a[],int b[],int temp[]){
temp[0]=(a[0]*b[0]+a[1]*b[2])%10000;
temp[1]=(a[0]*b[1]+a[1]*b[3])%10000;
temp[2]=(a[2]*b[0]+a[3]*b[2])%10000;
temp[3]=(a[2]*b[1]+a[3]*b[3])%10000;
}
void Fib_divide(int n,int matrix[]){
int temp[4];
int newMat[4];
if(n==0){
matrix[0]=0;
matrix[1]=0;
matrix[2]=0;
matrix[3]=0;
}
if(n==1){
matrix[0]=1;
matrix[1]=1;
matrix[2]=1;
matrix[3]=0;
}
if(n>=2&&n%2==0){
Fib_divide(n/2,newMat);
Matrix(newMat,newMat,matrix);
}
if(n>=2&&n%2==1){
Fib_divide((n-1)/2,newMat);
Matrix(newMat,newMat,temp);
Fib_divide(1,newMat);
Matrix(newMat,temp,matrix);
}
}
int main(){
int n;
int arr[4];
while(1){
scanf("%d",&n);
if(n==(-1))
break;
else
{
Fib_divide(n,arr);
printf("%ld\n",arr[1]);
}
}
return 0;
}