数据存储

json文件处理:

什么是json:

JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式。它基于 ECMAScript (w3c制定的js规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言。 易于人阅读和编写,同时也易于机器解析和生成,并有效地提升网络传输效率。更多解释请见:https://baike.baidu.com/item/JSON/2462549?fr=aladdin

JSON支持数据格式:

  1. 对象(字典)。使用花括号。
  2. 数组(列表)。使用方括号。
  3. 整形、浮点型、布尔类型还有null类型。
  4. 字符串类型(字符串必须要用双引号,不能用单引号)。

多个数据之间使用逗号分开。
注意:json本质上就是一个字符串。

字典和列表转JSON:

import json

books = [
    {
        'title': '钢铁是怎样练成的',
        'price': 9.8
    },
    {
        'title': '红楼梦',
        'price': 9.9
    }
]

json_str = json.dumps(books,ensure_ascii=False)
print(json_str)

因为jsondump的时候,只能存放ascii的字符,因此会将中文进行转义,这时候我们可以使用ensure_ascii=False关闭这个特性。
Python中。只有基本数据类型才能转换成JSON格式的字符串。也即:intfloatstrlistdicttuple

将json数据直接dump到文件中:

json模块中除了dumps函数,还有一个dump函数,这个函数可以传入一个文件指针,直接将字符串dump到文件中。示例代码如下:

books = [
    {
        'title': '钢铁是怎样练成的',
        'price': 9.8
    },
    {
        'title': '红楼梦',
        'price': 9.9
    }
]
with open('a.json','w') as fp:
    json.dump(books,fp)

将一个json字符串load成Python对象:

json_str = '[{"title": "钢铁是怎样练成的", "price": 9.8}, {"title": "红楼梦", "price": 9.9}]'
books = json.loads(json_str,encoding='utf-8')
print(type(books))
print(books)

直接从文件中读取json:

import json
with open('a.json','r',encoding='utf-8') as fp:
    json_str = json.load(fp)
    print(json_str)

csv文件处理

读取csv文件:

import csv

with open('stock.csv','r') as fp:
    reader = csv.reader(fp)
    titles = next(reader)
    for x in reader:
        print(x)

这样操作,以后获取数据的时候,就要通过下表来获取数据。如果想要在获取数据的时候通过标题来获取。那么可以使用DictReader。示例代码如下:

import csv

with open('stock.csv','r') as fp:
    reader = csv.DictReader(fp)
    for x in reader:
        print(x['turnoverVol'])

写入数据到csv文件:

写入数据到csv文件,需要创建一个writer对象,主要用到两个方法。一个是writerow,这个是写入一行。一个是writerows,这个是写入多行。示例代码如下:

import csv

headers = ['name','age','classroom']
values = [
    ('qf',18,'111'),
    ('wena',20,'222'),
    ('bbc',21,'111')
]
with open('test.csv','w',newline='') as fp:
    writer = csv.writer(fp)
    writer.writerow(headers)
    writer.writerows(values)

也可以使用字典的方式把数据写入进去。这时候就需要使用DictWriter了。示例代码如下:

import csv

headers = ['name','age','classroom']
values = [
    {"name":'wenn',"age":20,"classroom":'222'},
    {"name":'abc',"age":30,"classroom":'333'}
]
with open('test.csv','w',newline='') as fp:
    writer = csv.DictWriter(fp,headers)
    writer = csv.writeheader()
    writer.writerow({'name':'qf',"age":18,"classroom":'111'})
    writer.writerows(values)

Excel文件处理

在爬虫开发中,我们主要关注Excel文件的读写,不会过多关心Excel中的一些样式。如果想要读写Excel文件,需要借助到两个库xlrdxlwt,其中xlrd是用于读的,xlwt是用于写的,安装命令如下:

pip install xlrd
pip install xlwt

读取Excel文件:

import xlrd

workbook = xlrd.open_workbook("成绩表.xlsx")
sheet_names = workbook.sheet_names()
print(sheet_names) #打印所有的sheet的名称

获取Sheet

一个Excel中可能有多个Sheet,那么可以通过以下方法来获取想要的Sheet信息:

  1. sheet_names:获取所有的sheet的名字。
  2. sheet_by_index:根据索引获取sheet对象。
  3. sheet_by_name:根据名字获取sheet对象。
  4. sheets:获取所有的sheet对象。
  5. sheet.nrows:这个sheet中的行数。
  6. sheet.ncols:这个sheet中的列数。

示例代码如下:

import xlrd

workbook = xlrd.open_workbook("成绩表.xlsx")
sheet_names = workbook.sheet_names()
print(sheet_names) #打印所有的sheet的名称

# 根据索引获取sheet
sheet = workbook.sheet_by_index(0)
print(sheet.name)

# 根据名称获取sheet
sheet = workbook.sheet_by_name("1班成绩")
print(sheet.name)

# 获取所有的sheet对象
sheets = workbook.sheets()
for sheet in sheets:
    print(sheet.name)

# 获取这个sheet中的行数和列数
nrows = sheet.nrows
ncols = sheet.ncols

获取Cell及其属性:

每个Cell代表的是表格中的一格。以下方法可以方便获取想要的cell

  1. sheet.cell(row,col):获取指定行和列的cell对象。
  2. sheet.row_slice(row,start_col,end_col):获取指定行的某几列的cell对象。
  3. sheet.col_slice(col,start_row,end_row):获取指定列的某几行的cell对象。
  4. sheet.cell_value(row,col):获取指定行和列的值。
  5. sheet.row_values(row,start_col,end_col):获取指定行的某几列的值。
  6. sheet.col_values(col,start_row,end_row):获取指定列的某几行的值。

示例代码如下:

sheet = workbook.sheet_by_index(0)

# 使用cell方法获取指定的cell对象
for col in range(sheet.ncols):
    for row in range(sheet.nrows):
        print(sheet.cell(row,col))

# 使用row_slice获取第0行的1-2列的cell对象
cells = sheet.row_slice(0,1,3)
# 使用col_slice获取第0列的1-2行的cell对象
cells = sheet.col_slice(0,1,3)

另外在Cell上面也有一些常用的属性:

  1. cell.value:这个cell里面的值。
  2. cell.ctype:这个cell的数据类型。

Cell的数据类型:

  1. xlrd.XL_CELL_TEXT(Text):文本类型。
  2. xlrd.XL_CELL_NUMBER(Number):数值类型。
  3. xlrd.XL_CELL_DATE(Date):日期时间类型。
  4. xlrd.XL_CELL_BOOLEAN(Bool):布尔类型。
  5. xlrd.XL_CELL_BLANK:空白数据类型。

写入Excel:

写入Excel步骤如下:

  1. 导入xlwt模块。
  2. 创建一个Workbook对象。
  3. 创建一个Sheet对象。
  4. 使用sheet.write(row,col,data)方法把数据写入到Sheet下指定行和列中。如果想要在原来workbook对象上添加新的cell,那么需要调用put_cell来添加。
  5. 保存成Excel文件。

示例代码如下:

import xlwt
import random

workbook = xlwt.Workbook(encoding='utf-8')
sheet = workbook.add_sheet("成绩表")
# 添加表头
fields = ['数学','英语','语文']
for index,field in enumerate(fields):
    sheet.write(0,index,field)

# 随机的添加成绩
for row in range(1,10):
    for col in range(3):
        grade = random.randint(0,100)
        sheet.write(row,col,grade)

workbook.save("abc.xls")

另外,如果想要在原来已经存在的Excel文件中添加新的行或者新的列,那么需要采用put_cell(row,col,type,value,xf_index)来添加进去,最后再放到xlwt创建的workbook中,然后再保存进去。示例代码如下:

import xlrd
import xlwt

workbook = xlrd.open_workbook("成绩表.xlsx")
rsheet = workbook.sheet_by_index(0)

# 添加总分成绩
rsheet.put_cell(0,4,xlrd.XL_CELL_TEXT,"总分",None)
for row in range(1,rsheet.nrows):
    grade = sum(rsheet.row_values(row,1,4))
    rsheet.put_cell(row,4,xlrd.XL_CELL_NUMBER,grade,None)

# 添加每个科目的平均成绩
total_rows = rsheet.nrows
total_cols = rsheet.ncols
for col in range(1,total_cols):
    grades = rsheet.col_values(col,1,total_rows)
    avg_grade = sum(grades)/len(grades)
    print(type(avg_grade))
    rsheet.put_cell(total_rows,col,xlrd.XL_CELL_NUMBER,avg_grade,None)

# 重新写入一个新的excel文件数据
wwb = xlwt.Workbook(encoding="utf-8")
wsheet = wwb.add_sheet("1班学生成绩")
for row in range(rsheet.nrows):
    for col in range(rsheet.ncols):
        wsheet.write(row,col,rsheet.cell_value(row,col))

wwb.save("abc.xls")

MySQL数据库操作

安装mysql:

  1. 在官网:https://dev.mysql.com/downloads/windows/installer/5.7.html
  2. 如果提示没有.NET Framework框架。那么就在提示框中找到下载链接,下载一个就可以了。
  3. 如果提示没有Microsoft Virtual C++ x64(x86),那么百度或者谷歌这个软件安装即可。
  4. 如果没有找到。那么私聊我。

navicat:

navicat是一个操作mysql数据库非常方便的软件。使用他操作数据库,就跟使用excel操作数据是一样的。

安装驱动程序:

Python要想操作MySQL。必须要有一个中间件,或者叫做驱动程序。驱动程序有很多。比如有mysqldbmysqlclientpymysql等。在这里,我们选择用pymysql。安装方式也是非常简单,通过命令pip install pymysql即可安装。

数据库连接:

数据库连接之前。首先先确认以下工作完成,这里我们以一个pymysql_test数据库.以下将介绍连接mysql的示例代码:

    import pymysql

    db = pymysql.connect(
        host="127.0.0.1",
        user='root',
        password='root',
        database='pymysql_test',
        port=3306
    )
    cursor = db.cursor()
    cursor.execute("select 1")
    data = cursor.fetchone()
    print(data)
    db.close()

插入数据:

import pymysql

db = pymysql.connect(
    host="127.0.0.1",
    user='root',
    password='root',
    database='pymysql_test',
    port=3306
)
cursor = db.cursor()
sql = """
insert into user(
    id,username,gender,age,password
  ) 
  values(null,'abc',1,18,'111111');
"""
cursor.execute(sql)
db.commit()
db.close()

如果在数据还不能保证的情况下,可以使用以下方式来插入数据:

sql = """
insert into user(
    id,username,gender,age,password
  ) 
  values(null,%s,%s,%s,%s);
"""

cursor.execute(sql,('spider',1,20,'222222'))

查找数据:

使用pymysql查询数据。可以使用fetch*方法。

  1. fetchone():这个方法每次之获取一条数据。
  2. fetchall():这个方法接收全部的返回结果。
  3. fetchmany(size):可以获取指定条数的数据。
    示例代码如下:
cursor = db.cursor()

sql = """
select * from user
"""

cursor.execute(sql)
while True:
    result = cursor.fetchone()
    if not result:
        break
    print(result)
db.close()

或者是直接使用fetchall,一次性可以把所有满足条件的数据都取出来:

cursor = db.cursor()

sql = """
select * from user
"""

cursor.execute(sql)
results = cursor.fetchall()
for result in results:
    print(result)
db.close()

或者是使用fetchmany,指定获取多少条数据:

cursor = db.cursor()

sql = """
select * from user
"""

cursor.execute(sql)
results = cursor.fetchmany(1)
for result in results:
    print(result)
db.close()

删除数据:

cursor = db.cursor()

sql = """
delete from user where id=1
"""

cursor.execute(sql)
db.commit()
db.close()

更新数据:

conn = pymysql.connect(host='localhost',user='root',password='root',database='pymysql_demo',port=3306)
cursor = conn.cursor()

sql = """
update user set username='aaa' where id=1
"""
cursor.execute(sql)
conn.commit()

conn.close()

Python操作MongoDB

安装pymongo

要用python操作mongodb,必须下载一个驱动程序,这个驱动程序就是pymongo

pip install pymongo

连接MongoDB

import pymongo
# 获取连接的对象
client = pymongo.MongoClient('127.0.0.1',port=27017)
# 获取数据库
db = client.zhihu
# 获取集合(表)
collection = db.qa
# 插入一条数据到集合中
collection.insert_one({
    "username":"abc",
    "password":'hello'
})

数据类型:

类型说明
Object ID文档ID
String字符串,最常用,必须是有效的UTF-8
Boolean存储一个布尔值,true或false
Integer整数可以是32位或64位,这取决于服务器
Double存储浮点值
Arrays数组或列表,多个值存储到一个键
Object用于嵌入式的文档,即一个值为一个文档
Null存储Null值
Timestamp时间戳,表示从1970-1-1到现在的总秒数
Date存储当前日期或时间的UNIX时间格式

操作MongoDB

操作MongoDB的主要方法如下:

  1. insert_one
    

    :加入一条文档数据到集合中。示例代码如下:

     collection.insert_one({
         "username":"abc",
         "password":'hello'
     })
    
  2. insert_many
    

    :加入多条文档数据到集合中。

     collection.insert_many([
         {
             "username":'abc',
             'password':'111111'
         },
         {
             "username":'bbb',
             'password':'222222'
         },
     ])
    
  3. find_one
    

    :查找一条文档对象。

     result = collection.find_one()
     print(result)
     # 或者是指定条件
     result = collection.find_one({"username":"abc"})
     print(result)
    
  4. update_one
    

    :更新一条文档对象。

     collection.update_one({"username":"abc"},{"$set":{"username":"aaa"}})
    
  5. update_many
    

    :更新多条文档对象。

     collection.update_many({"username":"abc"},{"$set":{"username":"aaa"}})
    
  6. delete_one
    

    :删除一条文档对象。

     collection.delete_one({"username":"abc"})
    
  7. delete_many
    

    :删除多条文档对象。

     collection.delete_one({"username":"abc"})
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值