python
文章平均质量分 77
a Fang
行我所行,无问西东
展开
-
Python数据清洗与可视化——北京租房数据统计分析05
北京租房数据统计分析5.1数据的爬取代码:# 5北京租房数据统计分析# 5.1数据的爬取import pandas as pdimport numpy as npfile_path=open(r"D:\python课设\数据\数据\5、北京租房数据统计分析\链家北京租房数据.csv")file_data=pd.read_csv(file_path,encoding="utf-8")file_data运行结果:首先使用pandas的read_csv()方法进行数据的读取,然后就能原创 2021-12-28 23:04:00 · 13120 阅读 · 21 评论 -
Python数据处理与可视化分析——某年河北省旅游景点数据
可视化分析某年河北省旅游景点数据4.1 数据的爬取代码:# 4.1 数据的爬取import pandas as pdimport numpy as npfile_path=open(r'风景名胜区.csv')local_data=pd.read_csv(file_path)local_data运行结果:首先使用pandas的read_csv()方法进行数据的读取,然后就能够看到相应的表格信息。4.2河北省景点面积和旅客量位居前三的条形图显示4.2.1数据预处理代码:# 4原创 2021-12-27 23:38:01 · 16822 阅读 · 40 评论 -
Python数据清洗与处理——运动员信息的分组与聚合
运动员信息的分组与聚合3.1 数据的爬取代码:import pandas as pdf = open('运动员信息表.csv')data=pd.read_csv(f,skiprows=0,header=0)print(data)运行结果:首先使用pd.read_csv(f,skiprows=0,header=0)进行数据的读取,并且将数据转换成为dataframe的格式给对象,做初始化,方便后面进行数据的分析。3.2统计男篮、女篮运动员的平均年龄、身高、体重代码:# 3.2统计男篮原创 2021-12-27 18:59:26 · 8054 阅读 · 2 评论 -
Python数据分析与处理——处理中国地区信息
预处理地区信息2.1数据的爬取代码:import pandas as pddata=pd.read_csv("example_data.csv",header=1)print(data)data1=pd.read_csv("北京地区信息.csv",header=1,encoding='gbk')data2=pd.read_csv("天津地区信息.csv",encoding='gbk')print(data1)print(data2) 代码运行结果:首先使用panda原创 2021-12-27 18:57:57 · 3740 阅读 · 3 评论 -
Python数据分析与处理——北京高考分数线统计分析
北京高考分数线统计分析为了帮助广大考生和家长了解高考历年的录取情况,很多网站都汇总了各省市的录取控制分数线,为广大考生填报志愿提供参考。因受多种因素影响,每年的分数线或多或少会有一些变动。采集北京2006-2019年的信息。使用Python的Pandas库完成以下数据分析。1.1 数据爬取包含三部分内容:从哪里爬取,如何爬取,爬取的结果代码:import pandas as pdimport numpy as npdata=pd.read_excel("scores.xlsx",heade原创 2021-12-27 18:56:10 · 11032 阅读 · 3 评论 -
迅速入门爬虫数据清洗与可视化
数据爬取与分析1. 基础知识1.1 数据分析的基础知识数据分析的一般流程:明确目标-》采集数据-》数据清洗与分析-》绘制图表并且可视化-》得出结论1.2 具有python特色的程序1.3 字符串切片1 循环打印嵌套列表:movies=[“the holy”,1975,“terry jones”,91,[“graham”,[“michael”,“john”,“gilliam”,“idle”,“haha”]]],实现以下形式的输出:The holy19752、字典值操作有如下值集合原创 2021-10-20 21:22:13 · 7384 阅读 · 6 评论