Python数据清洗与处理——运动员信息的分组与聚合

这篇博客介绍了如何使用Python进行运动员数据的爬取、处理和分析,包括男篮、女篮运动员的平均年龄、身高、体重的统计,男篮运动员年龄、身高、体重的极差值计算,以及男篮运动员体质指数的计算和添加。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运动员信息的分组与聚合

3.1 数据的爬取

代码:

import pandas as pd
f = open('运动员信息表.csv')
data=pd.read_csv(f,skiprows=0,header=0)
print(data)

运行结果:

image-20211227174113867

首先使用pd.read_csv(f,skiprows=0,header=0)进行数据的读取,并且将数据转换成为dataframe的格式给对象,做初始化,方便后面进行数据的分析。

3.2统计男篮、女篮运动员的平均年龄、身高、体重

代码:

# 3.2统计男篮、女篮运动员的平均年龄、身高、体重
sex=data[["年龄(岁)","身高(cm)","体重(kg)"]].groupby(data["性别"]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值