剑指 Offer 47. 礼物的最大价值
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
思路一:本题可以使用DFS搜索
class Solution {
int res = Integer.MIN_VALUE;
public int maxValue(int[][] grid) {
backTrace(grid,0,0,0);
// 这里返回加上终点值是因为在backTrace中的判断我并没有加上终点值,在那里加其实也可以。因人而异。
return res+grid[grid.length-1][grid[0].length-1];
}
public void backTrace(int[][] grid,int sum,int i,int j){
if(i == grid.length-1 &&j == grid[0].length-1){
res = Math.max(sum,res);
return;
}
if(i >= grid.length || j >= grid[0].length) return;
// 做选择
sum += grid[i][j];
// 回溯
backTrace(grid,sum,i+1,j);
backTrace(grid,sum,i,j+1);
// 撤销选择
sum -= grid[i][j];
}
}
由于DFC会有很多路径会重复计算,所以导致一旦数据量变大,时间复杂度就会很高。结果就是在提交答案的时候超时了。
思路二:动态规划,本题是求最优解,而求到终点的最优解其实就是相当于求到达终点前一格的最优解。
class Solution {
public int maxValue(int[][] grid) {
// dp[i][j]代表到达i,j这个坐标能拿到的最大价值
int[][] dp = new int[grid.length][grid[0].length];
// base case
dp[0][0] = grid[0][0];
// 不难得出 第一行 第一列的数据就是数据的累加而已
for(int i =1;i < grid.length;i++){
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for(int i = 1;i < grid[0].length;i++){
dp[0][i] = dp[0][i-1] + grid[0][i];
}
// 转移方程:Math.max(dp[i-1][j],dp[i][j-1]) + grid[i][j]
for(int i = 1;i<grid.length;i++){
for(int j = 1;j<grid[0].length;j++){
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]) + grid[i][j];
}
}
return dp[grid.length-1][grid[0].length-1];
}
}