剑指 Offer 47. 礼物的最大价值

剑指 Offer 47. 礼物的最大价值

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 13521 可以拿到最多价值的礼物

思路一:本题可以使用DFS搜索

class Solution {
    int res = Integer.MIN_VALUE;
    public int maxValue(int[][] grid) {
        backTrace(grid,0,0,0);
        // 这里返回加上终点值是因为在backTrace中的判断我并没有加上终点值,在那里加其实也可以。因人而异。
        return res+grid[grid.length-1][grid[0].length-1];
    }

    public void backTrace(int[][] grid,int sum,int i,int j){
        if(i == grid.length-1 &&j == grid[0].length-1){
            res = Math.max(sum,res);
            return;
        }
        if(i >= grid.length || j >= grid[0].length) return;
        // 做选择
        sum += grid[i][j];
        // 回溯
        backTrace(grid,sum,i+1,j);
        backTrace(grid,sum,i,j+1);
        // 撤销选择
        sum -= grid[i][j];
    }
}
由于DFC会有很多路径会重复计算,所以导致一旦数据量变大,时间复杂度就会很高。结果就是在提交答案的时候超时了。

思路二:动态规划,本题是求最优解,而求到终点的最优解其实就是相当于求到达终点前一格的最优解。

class Solution {   
    public int maxValue(int[][] grid) {
        // dp[i][j]代表到达i,j这个坐标能拿到的最大价值
        int[][] dp = new int[grid.length][grid[0].length];
		
        // base case
        dp[0][0] = grid[0][0];
        // 不难得出 第一行 第一列的数据就是数据的累加而已
        for(int i =1;i < grid.length;i++){
            dp[i][0] = dp[i-1][0] + grid[i][0];
        }
        for(int i = 1;i < grid[0].length;i++){
            dp[0][i] = dp[0][i-1] + grid[0][i];
        }
		// 转移方程:Math.max(dp[i-1][j],dp[i][j-1]) + grid[i][j]
        for(int i = 1;i<grid.length;i++){
            for(int j = 1;j<grid[0].length;j++){
                dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]) + grid[i][j];
            }
        }
        return dp[grid.length-1][grid[0].length-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值