备战蓝桥杯—2016(8)四平方和

四平方和

四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表玉为4个数的平方和。
比如:
5=02+02+12+22
7=12+12+12+22
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0<=a<=b<=c<=d
并对所有的可能表示法按a,b,c,d为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N(N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开

例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838

参考代码
#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
int N;
map<int,int>cache;
int main()
{
	scanf("%d",&N);
	for(int c=0;c*c<N/2; c++){
		for(int d=c; c*c+d*d <=N; d++){
			if(cache.find(c*c+d*d)==cache.end() )
			cache[c*c+d*d]=c;
		}
	}
	for (int a=0; a*a<N/4; a++){
		for(int b=a; a*a+b*b<=N/2; b++){
			if(cache.find(N-(a*a+b*b))!=cache.end()){
				int c = cache[N-a*a-b*b];
				int d = int (sqrt(N-a*a-b*b-c*c));
				printf("%d %d %d %d\n",a,b,c,d);
				return 0;
			}
		}
	}
	return 0;
}
参考结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值