四平方和
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表玉为4个数的平方和。
比如:
5=02+02+12+22
7=12+12+12+22
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0<=a<=b<=c<=d
并对所有的可能表示法按a,b,c,d为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N(N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
参考代码
#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
int N;
map<int,int>cache;
int main()
{
scanf("%d",&N);
for(int c=0;c*c<N/2; c++){
for(int d=c; c*c+d*d <=N; d++){
if(cache.find(c*c+d*d)==cache.end() )
cache[c*c+d*d]=c;
}
}
for (int a=0; a*a<N/4; a++){
for(int b=a; a*a+b*b<=N/2; b++){
if(cache.find(N-(a*a+b*b))!=cache.end()){
int c = cache[N-a*a-b*b];
int d = int (sqrt(N-a*a-b*b-c*c));
printf("%d %d %d %d\n",a,b,c,d);
return 0;
}
}
}
return 0;
}