Petri网-3、Petri 网定义 与 3.3 EN系统

3、Petri 网

3.1 Petri网定义

3.1.1 为什么叫Petri网

Carl Adam Petri( 1926—2010 ), 莱比锡。《Communication With Automata》1962(Phd论文: Petri网起源于此,1970’s 年代美国人学术会议首次称之为 Petri Net)

Prof.Petri称之为 Net Theory

There is no need for Net Theory to exist if there is no real application of it.
There could be no real applications of Net Theory if there is no General Net Theory
3.1.2 Petri 网定义
  1. 有向网
  2. 以有向网为基础的网系统
  3. 网系统(模型)+理论(GNT)
  4. 模型+理论+应用
In order to apply net theory with success, it is by no means necessary to study
physics, or to remember the physical interpretations of net theory.
Just rely on the fact that every net(draw on paper) can be connected to the physical real world by a short(≤4) chain of net morphisms.
The 4 net morphisms are:
1. An injection: your net is, unlike the universe, not a system which is closed with respect of the flow of matter, energy and information.
2. A refinement: Your net does not describe all the detailed elementary physical interactions, but rather, very much coarser.
3. A breaking of the physical symmentry: your net has a definite direction for the
execution of processes while the physical universe is time reversal invariant.
4. An abstraction: your net is an abstract from what belongs together in your purposeful activities. You need a concept that ties things to a pragmatic unit for your mind.

反向理解 Petri 教授的话(Petri网应用)

  • 一个pragmatic unit
  • 一个execution direction: from past to future
  • 一个coarsening process (concealing details)
  • 一个abstracting process (formalizing)

3.2 Petri 系统层次模型

  1. 第一层
    1. EN系统:Elementary net system,对象个体模型(人、物、信息、数据)和行动轨迹
    2. C/E系统:Condition/event system,大自然
  2. 第二层
    1. P/T系统:Place/transition system
  3. 第三层:高级网系统
    1. Pr/T系统:Predicate/transition system
    2. Colored net system
  4. 第四层:
    1. cyber net system
    2. C_net system

3.3 EN系统 Elementary net system

基本网系统,定义:

∑ = ( B , E ; F , c i n ) \sum=(B,E;F,c_{in}) =(B,E;F,cin) 称为EN系统,如果 ( B , E ; F ) (B,E;F) (B,E;F) 为有向网,且 c i n ⊆ 2 B c_{in}\subseteq 2^B cin2B

  • 2 B 2^B 2B B B B 的幂集合,即 B B B 的所有子集的集合
  • B B B 中库所只有两种状态:有托肯(棋子)或无托肯。称为条件(Bedingung德语)
  • E E E 中变迁称为事件(Event )只与条件有关
  • C i n C_{in} Cin 由成真的条件(有托肯的库所)组成,称为E的初始情态(case)
3.3.1 丛

B B B 的子集 c c c,即 c ⊆ B c\subseteq B cB,称为 ∑ \sum 的丛(constellation)

3.3.2 变迁规则
  1. e ∈ E e\in E eE,在丛 c c c 有发生权,记为: c [ e > c[e> c[e>,如果 . e ⊆ c ∧ e . ∩ c = ∅ ^.e\subseteq c \wedge e^. \cap c=\empty .ece.c=
  2. c [ e > c[e> c[e> c . = ( c − . e ) ∪ e . c^.=(c-^.e)\cup e^. c.=(c.e)e. 称为 c c c 的后继丛,记为 c [ e > c ′ c[e>c' c[e>c
3.3.2.1 解释和不解释

例1

  • ∑ 1 \sum_1 1 的动态变化:周而复始的教堂婚礼,三个token代表神父( b 0 b_0 b0)和两位新人( b 0 , b 1 b_0, b_1 b0,b1)( T T T 不变量)
  • b 0 , b 1 , b 2 . . . b 9 b_0, b_1, b_2... b_9 b0,b1,b2...b9 :三位参与者的状态
  • b 0 , b 3 , b 4 , b 9 b_0,b_3, b_4,b_9 b0,b3,b4,b9 :神父(S不变量1)
  • b 1 , b 3 , b 5 , b 7 b_1,b_3,b_5,b_7 b1,b3,b5,b7 :一位新人(S不变量2)
  • b 2 , b 4 , b 6 , b 8 b_2,b_4,b_6,b_8 b2,b4,b6,b8 :另一位新人(S不变量3)

结构性质:不变量

基本现象:冲突,顺序,并发,同步,异步

3.3.3.2 同步与异步
  • 同步(局部):两组(个)事件反复发生呈现的规律
  • 同步(全局):任何两组事件都(加权)同步
  • 异步(全局): 没有全局控制,局部确定
  • Petri 网是异步并发系统(局部确定,所以并发)

例2-法官和犯人

法官向犯人宣布

  • 下周选一日执行死刑,执行前一天会向犯人宣布
  • 允许犯人预猜行刑日,只能猜一次,猜中即可获释

犯人推理:

  • 周日为最后一天,不会周日执行,因为周六即可猜中,于是周六不会被选…
  • 结论:不会被处死
  • 结果:执行了
  • ?错在哪里

用petri 网描述,体会要素和抽象

  • i = 1 , 2 , 3 , 4 , 5 , 6 , 7 i=1,2,3,4,5,6,7 i=1,2,3,4,5,6,7
  • a t i at_i ati:等待的犯人,周 i i i 前一日
  • d i d_i di :定于周 i i i 执行, d ’ i d’_i di:周 i i i 不执行
  • g i g_i gi:犯人猜周 i i i 执行, g ’ i g’_i gi :未猜周 i i i 执行
  • d i , d ’ i d_i, d’_i di,di:共有 7 个token ,恰有一个 d i d_i di 有(执行日)
  • g ’ i g’_i gi :共有 7 个token ,犯人可将其中一个移入 g i g_i gi (猜一次)
  • e i e_i ei:周 i i i 执行
  • r i r_i ri:周 i i i 释放

在这里插入图片描述

3.3.3约束弧

引入约束弧,简化 ∑ 2 \sum_2 2 ∑ 2 ′ \sum'_2 2

在这里插入图片描述

在这里插入图片描述

3.3.4 条件、事件的物理意义
3.3.4.1 条件的物理意义
  • 物理对象(人和物)个体的一种状态,如神父、犯人
  • 若干对象作为一个整体的状态(如对话中的神父与新娘)
  • 一位(one bit)信息的值(真或假),如 ∑ 2 \sum_2 2 中的 d i d_i di g i g_i gi
  • 作为状态的信息必须可观察(有确定的值)
  • 注意:信息系统中的一位信息和条件不同
3.3.4.2 事件的物理意义
  • 可观察的变化:有确定的观察结果。不因观察者或观察手段而改变(不关心变化原理)
  • 原子变化:变化或发生或不发生。不会中断,无中间状态

特例:

  • a, b 1 b_1 b1 b 2 b_2 b2 b 3 b_3 b3 b 4 b_4 b4 结构上一样,非简单网

    • 在这里插入图片描述
  • b, e e e 不可能发生,冲撞

    • 在这里插入图片描述
  • c, e 3 e_3 e3 不能发生,非单纯

    • b 7 b_7 b7 中的 token:工具或化学催化剂
    • 自用工具不必出现在模型中
    • 催化剂必须出现,但模型不能是EN系统,应该是有未知的中间状态
    • “好”的EN系统应该是单纯的
    • 非单纯结构是不适合用EN系统描述的物理对象
    • 在这里插入图片描述

例4-四季变化

∑ 3 \sum_3 3 是四季变化合格的EN系统吗?

在这里插入图片描述

  • 条件(状态)可观察吗?
  • 事件(季节改变)可观察吗?

合格的四季系统什么样?

在这里插入图片描述

  • 本季为主,上一季的影子,下一季的味道
  • 满足并发(出现)公理的最小系统
  • 有向网上的完备化操作+同步距离计算
3.3.5 可达情态集
3.3.5.1 定义
3.3.5.1.1 自然语言定义

C i n C_{in} Cin (初始情态)开始,经有限多个事件发生所产生的所有后继丛构成的集合称为EN系统 ∑ = ( B , E , F , C i n ) \sum = (B, E, F, C_{in}) =(B,E,F,Cin) 的可达集,用 C ∑ C_{\sum} C 表示。 C ∑ C_{\sum} C 中的丛称为 ∑ \sum 的情态。

  • 那么初始状态算可达情态集吗?即 C i n ∈ C ∑ C_{in}\in C_{\sum} CinC
3.3.5.1.2 半形式化定义

2 B 2^B 2B 的子集 R R R 称为 EN系统 ∑ = ( B , E , F , C i n ) \sum =(B,E,F,C_{in}) =(B,E,F,Cin) 的可达情态集,

C i n ∈ R ∧ C ∈ R ∧ ∃ e ∈ E : C [ e > C ′ → C ′ ∈ R C_{in}\in R \wedge C \in R \wedge \exists e\in E:C[e>C' \\ \rightarrow C'\in R CinRCReE:C[e>CCR

此外 R R R 中没有别的丛 R R R 中的丛称为情态(case)。通常用 C ∑ C_{\sum} C 表示可达情态集。

3.3.5.1.3 构造法
  1. 令集合 R = { ( c i n , 0 ) } R=\{(c_{in}, 0)\} R={(cin,0)}

  2. R R R 中任取 ( c , 0 ) (c,0) (c,0)

∀ e ∈ E : ( c [ e > c ′ ∧ { ( c ′ , 0 ) , ( c ′ , 1 } ) ∩ R = ∅ → R : = R ∪ { c ′ , 0 } → R : = R ∪ { ( c , 1 ) − ( c , 0 ) } \forall e\in E:(c[e>c' \wedge \{(c',0),(c',1\}) \cap R=\empty \\ \rightarrow R:=R\cup\{c',0\} \\ \rightarrow R:=R \cup \{(c,1)-(c,0)\} eE:(c[e>c{(c,0),(c,1})R=R:=R{c,0}R:=R{(c,1)(c,0)}

直到 R R R 中不再有以 0 标注的 c c c

  1. C ∑ = { c ∣ ( c , 1 ) ∈ R } C_{\sum}=\{c|(c,1)\in R\} C={c(c,1)R}
3.3.5.1.4 形式化定义

C ∑ C_{\sum} C 为可达情态集,如果 R C ( C ∑ ) RC(C_{\sum}) RC(C)

F R ( R ) : ⟺ R ⊆ 2 B ∧ c i n ∧ ∀ c ∈ R : ( ∃ e ∈ E ∧ c [ e > c ′ → c ′ ∈ R R C ( C ) : ⟺ F R ( C ) ∧ ∀ C ′ : F R ( C ′ ) → C ⊆ C ′ FR(R):\Longleftrightarrow R \subseteq 2^B \wedge c_{in} \wedge \forall c \in R:(\exists e \in E \wedge c[e>c' \\ \rightarrow c' \in R \\ RC(C):\Longleftrightarrow FR(C) \wedge \forall C':FR(C')\\ \rightarrow C \subseteq C' FR(R):⟺R2BcincR:(eEc[e>ccRRC(C):⟺FR(C)C:FR(C)CC

对于形式化定义一定要考虑 定义的唯一性
R C ( C ) ∧ R C ( D ) → C = D RC(C) \wedge RC(D) \\ \rightarrow C = D RC(C)RC(D)C=D
证明:需要定义 C ⊆ D ∧ D ⊆ C C\subseteq D \wedge D \subseteq C CDDC

定理(算法终止):构造方法一定会终止,基本网系统中定义 因为 B B B 为有限集, 2 B 2^B 2B 也为有限集。

3.3.5.2 基本现象

c ∈ C ∑ c\in C_{\sum} cC e 1 , e 2 ∈ E e_1,e_2 \in E e1,e2E b ∈ B b\in B bB

e 1 , e 2 e_1,e_2 e1,e2 c c c 有顺序关系,如果 c [ e 1 > c ′ ∧ c ′ [ e 2 > ∧ ¬ c [ e 2 > c[e_1>c' \wedge c'[e_2> \wedge \neg c[e_2> c[e1>cc[e2>¬c[e2>

e 1 , e 2 e_1,e_2 e1,e2 c c c 有并发,如果 c [ e 1 > ∧ c [ e 2 > ∧ ( . e 1 ∪ e 1 . ) ∩ ( . e 2 ∪ e 2 . ) = ∅ c[e_1 > \wedge c[e_2> \wedge (^.e_1 \cup e_1^.) \cap (^.e_2 \cup e_2^.)=\empty c[e1>c[e2>(.e1e1.)(.e2e2.)=

e 1 , e 2 e_1,e_2 e1,e2 c c c 冲突(conflict),如果 c [ e 1 > ∧ c [ e 2 > ∧ ( . e 1 ∪ e 1 . ) ∩ ( . e 2 ∪ e 2 . ) ≠ ∅ c[e_1 > \wedge c[e_2> \wedge (^.e_1 \cup e_1^.) \cap (^.e_2 \cup e_2^.) \neq \empty c[e1>c[e2>(.e1e1.)(.e2e2.)=

情态 c c c 之下在条件 b b b 有冲撞(contact),如果 ∃ e ∈ E : . e ⊆ c ∧ b ∈ e . ∩ c \exists e \in E: ^.e \subseteq c \wedge b \in e^. \cap c eE:.ecbe.c

3.3.5.2.1 例5(参看教堂婚礼系统)

e 1 e_1 e1 e 2 e_2 e2 有顺序关系, e 1 e_1 e1 e 3 e_3 e3 有并发关系

在这里插入图片描述

一型冲突,竞争的是资源

在这里插入图片描述

二型冲突,竞争的是空间资源

在这里插入图片描述

冲撞

在这里插入图片描述

3.3.6 结构互补条件

b 1 b_1 b1 b 2 b_2 b2 称为结构互补条件,如果一方前集后集为另一方后集前集,即 . b 1 = b 2 . ∧ b 1 . = . b 2 ^.b_1 = b_2^. \wedge b_1^.=^.b_2 .b1=b2.b1.=.b2 ,例如:

在这里插入图片描述

补操作可以将二型冲突改为一型冲突

在这里插入图片描述

不操作可以消除冲撞

在这里插入图片描述

3.3.6.1 例7

根据定义,b 处有一冲撞:

在这里插入图片描述

自己跟自己争空间?观察不到的“事件”。没有必要修改定义,排除此种冲撞。

3.3.6.2 思考:四季系统有初始状态吗?

自然界变化无始无终,没有初态,只有当前状态,事件反向发生即可算出过去的状态。所有可能的过去、现在和未来状态构成“完全可达情态集”C。

3.3.6.3 例子

初始状态:

在这里插入图片描述

一次变迁:

在这里插入图片描述

二次变迁,此时只有红色的可以发生新的变迁:

在这里插入图片描述

三次变迁:

在这里插入图片描述

四次变迁:

在这里插入图片描述

五次变迁:

在这里插入图片描述

六次变迁:

在这里插入图片描述

七次变迁:

在这里插入图片描述

八次同第七次变迁,九次变迁:

在这里插入图片描述

红的 token 只能在四个地方出现,所以会有一个 s 不变量,即在这四个地方的 token 的量是一个固定值,只有一个。同样黄色的两个 token 也有自己的 基本 s 不变量。同样,把它们几个加起来可以组成 组合型的 s 不变量

替补变量:每一个 方格(变迁)都有自己出现的次数,比如其他的都是一次,只有下面的出现了两次:

在这里插入图片描述

这个例子可以用到教堂婚礼,红色的是神父,其他的两个是新人。

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
系统工程Petri-建模验证与应用指南.pdf》是一本关于系统工程领域中Petri建模验证与应用的指南手册。Petri是一种图形化的数学建模工具,能够表达和分析复杂系统中的并发、同步和竞争等关系,被广泛应用于系统工程、自动化控制、计算机科学等领域。 该指南主要涵盖了Petri的建模方法和技巧、验证和分析方法,以及应用案例等内容。首先介绍了Petri的基本概念和术语,包括库所、变迁、弧等基本元素的定义和表示方法。然后详细讲解了Petri的建模过程,包括如何识别系统的关键要素、如何建立Petri模型以及如何进行模型的分析和验证等。 在建模验证方面,该指南介绍了Petri的性质和特性,包括有界性、无冲撞性、活性等,并提供了对应的分析方法和工具。同时,还介绍了一些常用的Petri分析技术,如状态空间分析、死锁检测、性能分析等,以及相应的工具和软件的使用指南。 除了理论知识和方法,该指南还提供了一些实际应用案例,包括工业生产系统、通信络、交通系统等领域的应用。这些案例旨在帮助读者更好地理解和应用Petri建模验证方法,以解决实际工程问题。 总的来说,《系统工程Petri-建模验证与应用指南.pdf》是一本系统而全面的Petri建模验证与应用的指南手册,为系统工程领域的研究者、工程师和学生提供了宝贵的参考和指导。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值