动手学PyTorch(李沐)20 ----ResNet

image-20230920203938044
​ 每一个层都包含了前一个模型作为子模型,以致于不会使得模型学偏,确保模型一直向好的方向发展。

​ 思路是通过加层,不会影响到模型变复杂。做 f(x)=x+g(x) 加法,使得 如果新加的层没有学习到信息的时候,之前学习到的也能够传递到下一层,如果新加的层学到了新的信息,那么就可以叠加之前学到的信息。

​ 意思就是说会另外加一个 1 * 1 的卷积变换通道,再把信息加回去。

可以使用不同的残差块,也可以添加在不同的地方(卷积层、归一化层、激活层)

ResNet块

**ResNet512是经常用来刷分的模型,ResNet34通常是用的比较多的。 **

QA:

  1. f(x)=x+g(x) 中 加上 g( x ) 对loss下降如果效果不明显的话,g( x )的权重就不会被更新或者是一个随机小数,g(x) 就不会做出贡献。
  2. cos学习率会比step的固定学习率稍好一点,cos学习率简单。
  3. *resnet_block 就是把列表resnet_block展开,把每个元素都作为参数传入

为什么ResNet能训练1000层模型

怎么处理梯度消失的?

​ g(x) 相当于新加的层,如果说新加的层g(x)对数据的拟合能力比较好,那么梯度 ∂ g ( y ) ∂ y \frac{\partial g(y)}{\partial y} yg(y) 就很小,那么 ∂ g ( y ) ∂ y ⋅ ∂ y ∂ w \frac{\partial g(y)}{\partial y} \cdot \frac{\partial y}{\partial w} yg(y)wy 就很小,梯度小,要么就选择增大学习率,但增大学习率也没有太大的作用,因为靠近数据底部的更新,如果学习率太大,w的梯度也太大,那模型就不稳定了。

​ ResNet采用如下方法解决此问题 y ′ ′ = f ( x ) + g ( f ( x ) ) y^{\prime \prime}=f(x)+g(f(x)) y′′=f(x)+g(f(x)) ,对 y 求导的结果为 ∂ y ′ ′ ∂ w = ∂ y ∂ w + ∂ y ′ ∂ w \frac{\partial y^{\prime \prime}}{\partial w}=\frac{\partial y}{\partial w}+\frac{\partial y^{\prime}}{\partial w} wy′′=wy+wy 。如果后面部分比较小的时候,还有前面一部分大的。这就大+小=大,大*小=小差不多理解。

**这样的反向传播使得靠近数据的层也会拿到比较大的梯度,使得下面的层也能够做出比较搞笑的更新。**
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Residual(nn.Module):
  # 定义网络块
  def __init__(self, input_channels, num_channels,
               use_1x1conv=False, strides=1):
    super().__init__()
    self.conv1 = nn.Conv2d(input_channels, num_channels,
                           kernel_size=3, padding=1, stride=strides)
    self.conv2 = nn.Conv2d(num_channels, num_channels,
                           kernel_size=3, padding=1)
    if use_1x1conv:
      # 输出的高宽要和f(x)相匹配
      self.conv3 = nn.Conv2d(input_channels, num_channels,
                             kernel_size=1, stride=strides)
    else:
      self.conv3 = None
    self.bn1 = nn.BatchNorm2d(num_channels)
    self.bn2 = nn.BatchNorm2d(num_channels)
  # 使用网络,具体顺序可以在这里指定
  def forward(self, X):
    Y = F.relu(self.bn1(self.conv1(X)))
    Y = self.bn2(self.conv2(Y))
    if self.conv3:
      X = self.conv3(X)
    Y += X
    return F.relu(Y)

输入和输出形状一致

blk = Residual(3,3)
x = torch.rand(4,3,6,6)
y = blk(x)
y.shape

在这里插入图片描述
增加输出通道数的同时,减半输出的高和宽

blk = Residual(3,6,use_1x1conv=True,strides=2)
blk(x).shape

ResNet模型

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

def resnet_block(input_channels,num_channels,num_residuals,
                 first_block=False):
  blk=[]
  for i in range(num_residuals):
    if i==0 and not first_block:
      blk.append(
          Residual(input_channels,num_channels,
                   use_1x1conv=True,strides=2)
      )
    else:
      blk.append(Residual(num_channels,num_channels))
  return blk

b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))


net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
  X = layer(X)
  print(layer.__class__.__name__,'output shape:\t', X.shape)

在这里插入图片描述

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值