- 博客(196)
- 收藏
- 关注
原创 Stable Diffusion系列课程上:安装、提示词入门、常用模型(checkpoint、embedding、LORA)、放大算法、局部重绘、常用插件
介绍了stable diffusion基本功能:安装、提示词入门、常用模型(checkpoint、embedding、LORA)、放大算法、局部重绘、常用插件
2023-07-09 21:23:09 6845 1
原创 y3编辑器教学5:触发器2 案例演示
事件(Event):触发器的导火索,当设定的事件发生时触发器才会执行。条件(Condition):触发执行必须满足的条件。动作(Action):触发执行的结果。当事件被激活,满足了条件后才会执行动作。例如短跑比赛中,信号枪响(事件),只有参赛者(条件)会开始跑步(动作)。变量是可能随时变化的值,比如人的体重或年龄。变量按照作用域分为局部变量和全局变量。局部变量只在单个触发器内有效,而全局变量可以在整个触发器中被调用。变量不能重名变量类型布尔型:True或False。
2024-12-12 07:49:35 679
原创 Y3编辑器文档4:触发器1(对话、装备、特效、行为树、排行榜、不同步问题)
触发器是Y3编辑器中实现游戏逻辑的核心组件,它通过“事件-条件-动作”(Event-Condition-Action,简称ECA)的模式来实现各种效果。事件(Event):触发器的导火索,当设定的事件发生时触发器才会执行。条件(Condition):触发执行必须满足的条件。动作(Action):触发执行的结果。
2024-12-11 04:01:24 804
原创 y3编辑器文档3:物体编辑器
参考文档《物体编辑器》物体编辑器在操作区上方,选中对象时,可通过勾选使用物编属性,来设置该物件是应用物编属性或是默认属性。物体编辑器中共有9种可编辑的物体,点击界面最左侧的分类列表,可以对相应的摆件进行设置。你可以在分类列表右侧的文件夹列表中对该分类下的摆件进行管理。物体编辑器右侧界面分为数据,表现,触发器三个板块。物体编辑器中共有9种可编辑的物体,点击界面最左侧的分类列表,可以对相应的摆件进行设置。在文件夹列表中可以对该分类下的摆件进行管理。物体编辑器右侧界面分为数据,表现,触发器三个板块。
2024-12-07 22:09:04 836
原创 Y3编辑器文档2:场景编辑
缩小当前地图可能会删除掉地图之外的一些摆件,包括地形,地势(含纹理,悬崖,高度,涂鸦,裂缝),通行,单位,装饰物,物品,可破坏物,特效,镜头,区域,路径。,此镜头的视角为进入游戏之后的默认视角,无法删除,无法重命名。的地图,可以先在窗口左侧选择一个正方形的地图尺寸,然后在大小设置栏调节地图的宽度(W)与高度(H),或者借助右侧预览图四周的正反箭头,使地图大小朝该方向扩大或缩小。,可以调整装饰物的预设大小,角度,同样可以通过勾选设置为随机,来以随机的大小和角度来摆放装饰物,这样我们的场景会更加真实。
2024-12-07 22:08:28 1122
原创 Y3编辑器官方文档1:编辑器简介及菜单栏详解(文件、编辑、窗口、细节、调试)
在Git官网下载并安装Git for Windows,安装过程详见《Git下载安装教程》。在Github上注册Github账号配置本地Git信息和SSH ,创建本地项目并上传到Github。详见GitHub官方课程《GitHub 详细教程》《一文搞懂git版本库管理》。配置完成后,你可以上传本地项目内容,下载在线项目内容,实现协同开发。在开发简单项目时,大可略过此处,但如果你的游戏设计里涉及伤害与护甲关系、复合属性如何影响角色具体属性(例如角色的力量值同时影响其近战伤害和生命上限)
2024-12-07 22:00:08 739
原创 win7系统vscode插件功能无法启用,报错“error while fetching extensions.XHR failed”
chatgpt给的回复是:在 Windows 7 系统上出现这种错误,通常是由于网络问题或不兼容的 TLS 协议导致的。VS Code 的扩展市场需要通过 HTTPS 协议访问,而 Windows 7 默认不支持 TLS 1.2,需要安装最新的 Windows。是 Windows 7 的最高版本,它是 Windows Management Framework (WMF) 5.1 的一部分,我们直接安装WMF5.1。公司的用了好几年的电脑装的还是win7,这周刚装vscode准备学下lua。
2024-11-29 03:31:01 905 1
转载 datawhale 2411组队学习 模型压缩6 :模型蒸馏
随着人工智能的广泛应用,越来越多的场景需要将AI模型部署在边缘设备上,例如智能传感器、物联网设备和智能手机。这些设备通常具有极为有限的计算能力和内存,相比于在云端运行的大型模型,它们无法处理复杂的神经网络。 传统的云端AI依赖于强大的计算资源,如下图中提到的NVIDIA A100显卡,能够提供高达19.5 TFLOPS的浮点运算能力,并配备高达80GB的内存。这类硬件使得模型可以承载更大的参数量并处理复杂任务。 因此,如何将大模型的能力迁移到小设备上,以便在资源有限的条件下高效运行,成为了一个重要的
2024-11-28 06:27:19 39
原创 《datawhale2411组队学习 模型压缩技术7:NNI剪枝》
在线阅读NNI文档NNI(Neural Network Intelligence)是一个开源的自动机器学习(AutoML)工具,由微软亚洲研究院推出。它可以帮助用户自动化地进行超参数调优、神经网络架构搜索、模型压缩和特征工程等任务。NNI 支持多种深度学习框架,如PyTorch、TensorFlow等,并且可以在多种训练平台上运行,包括本地机器、远程服务器、Kubernetes等。NNI剪枝方法描述参考论文基于权重元素的绝对值,对每个权重元素按指定比例进行剪枝。使用最小 L1 权重范数修剪输出通道。
2024-11-28 02:52:35 980
原创 datawhale 2411组队学习:模型压缩4 模型量化理论(数据类型、int8量化方法、PTQ和QWT)
介绍了不同的数据类型计算方式和表示范围、浮点数精度误差及避免方式。int8量化的两种方法——零点量化和线性量化。最后介绍了训练后量化和量化感知训练。
2024-11-18 20:48:22 1115
原创 datawhale11月组队学习 模型压缩技术3:2:4结构稀疏化BERT模型
在本教程中,我们将对BERT问答模型进行`2:4`稀疏化。在微调后,模型准确性损失很小(F1得分86.92 vs 86.48),但推理速度提升了`1.3`倍。
2024-11-15 23:32:15 966
原创 datawhale11月组队学习 模型压缩技术2:PyTorch模型剪枝教程
介绍了Pytorch 的prune模块常用剪枝方法,剪枝前后模型的变化,以及最后的自定义剪枝方式。
2024-11-15 23:12:53 1361
原创 datawhale2411组队学习之模型压缩技术1:模型剪枝
介绍模型压缩、模型剪枝的主要概念,最后用代码实践了模型剪枝的标准(weight绝对值、L1范数、L2范数和梯度)和粒度(细粒度、模式级、向量级、Kernel级、Channel级和Filter级)
2024-11-13 20:07:37 872
原创 Python虚拟环境入门:虚拟环境如何工作、如何自定义创建和管理&管理工具venv、Virtualenv、conda
避免系统污染Linux和macOS等操作系统通常预装有Python,并用于系统内部任务。如果在系统的全局Python环境中安装外部软件包,这些软件包可能与系统相关的软件包混合,导致意外的副作用,影响操作系统的正常行为。此外,如果操作系统进行更新,可能会覆盖和丢失已安装的软件包,导致工作中断和问题。解决依赖冲突不同的项目可能需要使用不同版本的外部库,而在全局环境中只能安装一个版本,所以会导致版本冲突问题。使用虚拟环境可以为每个项目创建独立的环境,从而安装所需的不同版本库,避免版本覆盖和冲突。
2024-11-10 16:42:57 1697
原创 learnopencv系列三:GrabCut和DeepLabv3分割模型在文档扫描应用中的实现
本文分别使用传统视觉算法(GrabCut)和深度学习算法(DeepLabv3)进行文档扫描,然后进行对比测试,最后实现其streamlit web app。
2024-11-09 12:13:46 958
原创 learnopencv系列二:U2-Net/IS-Net图像分割(背景减除)算法、使用背景减除实现视频转ppt应用
文章目录一、视频转幻灯片应用1.1 什么是背景减除?1.1.1 背景减除简介1.1.2 bgslibrary1.2 OpenCV背景减除技术1.3 差异哈希1.3.1 图像哈希技术1.3.2 dHash算法1.3.3 图像哈希的速度和准确性测试1.4 视频转幻灯片应用的工作流程1.5 项目代码1.5.1 环境准备1.5.2 辅助模块1.5.3 使用帧差分进行背景减除1.5.2 使用OpenCV对背景像素进行统计建模1.5.3 后处理1.5.4 命令行选项1.6 GMG和KNN背景估计的比较1.7 改进与总
2024-11-08 06:37:40 1198
原创 learnopencv系列一:使用神经网络进行特征匹配(LoFTR、XFeat、OmniGlue)、视频稳定化、构建Chrome Dino游戏机器人
图像由多个对象或单个对象组成。每个对象在该图像中都带有不同的描述。图像特征是描述对象独特品质的信息片段,这些特征包括从简单的边缘和角点到更复杂的纹理(比如强度梯度)或独特的形状(比如斑点)。考虑一个人拿着一本书的图像。人类可以通过查看图像帧中的照明条件或对象周围的轮廓和形状来理解某些对象(人或书)存在于框架中。计算机如何解释相同的内容?图像特征的样子为此,我们使用图像特征。我们取每个图像像素并计算这些像素的强度梯度(与周围像素的强度值变化相比)。梯度值高的区域,通常是图像特征(角落或边缘)。
2024-10-30 20:23:03 636 1
原创 OpenCV系列教程六:信用卡数字识别、人脸检测、车牌/答题卡识别、OCR
随着深度学习的发展,基于卷积神经网络(CNN)的目标检测方法(如YOLO、SSD、MTCNN等)在复杂场景下表现出了更高的精度和鲁棒性。然而,对于资源受限的设备或需要高实时性的场景,OpenCV中的Haar级联分类器依然是一个快速、轻量的选择。上面找出的轮廓有四个点,但顺序是乱的,需要先确认每个点的位置,然后再进行透视变换。为了防止图片中混入其他物体造成检测错误,需要对识别出的轮廓进行判断,确保我们拿到的轮廓是答题卡的轮廓。该算法通过一系列的简单分类器进行多层次的过滤,达到高效检测的目的。
2024-10-25 01:48:05 881
原创 OpenCV系列教程七:虚拟计算器项目、目标追踪、SSD目标检测
目标视觉跟踪(Visual Object Tracking)是计算机视觉领域的一个重要问题,目前广泛应用在体育赛事转播、安防监控和无人机、无人车、机器人等领域。OTB50是一个包含50个视频序列的数据集,都经过人工标注,首次于2013年提出。这些视频序列涵盖了各种挑战,如光照变化、尺度变化、遮挡等。2015年提出了OTB100,包含了100个视频序列,其中涵盖了OTB50的所有序列。相关的数据集和测试代码库可以在Visual Tracker Benchmark的官方网站下载。
2024-10-22 16:22:38 1127
原创 OpenCV系列教程五:图像的分割与修复
前景和背景的可能性用GMM进行建模,基于这些模型将像素连接到两个超级终端(前景或背景),从而每条边都有一个属于前景或者背景的概率。通过距离变换得到前景的确定区域(sure_fg),通过膨胀得到背景的确定区域(sure_bg),再通过差集得到前景和背景之间的未知区域(unknown),这三部分的明确划分是成功应用分水岭算法的关键。分水岭算法的本质是基于标记的分割,为了让分水岭算法正确地找到物体的边界,需要明确的前景和背景标记以及未确定的区域(即前景和背景之间的模糊区域,需要算法来决定边界)。
2024-10-21 12:55:23 1463
原创 OpenCV系列教程四:图像金字塔、特征检测与特征匹配,图像查找、对齐和拼接
SIFT算法的核心原理可分为四个步骤:特征点检测、特征点定位、主方向确定和特征描述符生成。特征点检测首先,SIFT算法通过构建图像的多尺度金字塔来实现尺度不变性。使用高斯模糊函数对图像进行不同尺度的模糊处理,然后通过差分高斯(DoG, Difference of Gaussian)对模糊后的图像进行处理,获取图像的不同尺度空间。这些空间中的极值点(即在图像空间中比周围像素更亮或更暗的点)被认为是潜在的特征点。特征点精确定位在检测到的极值点中,SIFT对每个点进行精确定位。
2024-10-13 20:26:52 1296
原创 OpenCV系列教程三:图像直方图及阈值处理、图像轮廓、形态学操作、车辆统计项目
形态学()是指一系列用于处理图像形状和结构的算法,其基本思想是利用一种特殊的结构元(本质上就是卷积核)来测量或提取输入图像中相应的形状或特征。形态学操作通常用于预处理、图像分割、特征提取、图像滤波和图像增强等任务。形态学的基本操作包括: 阈值处理的主要意义是将图像中的某些区域分离出来,通常是为了突出前景(如物体)和背景(如场景)。通过二值化,可以将灰度图像转化为黑白图像(即二值图像),使后续的图像分析、边缘检测、目标识别等任务更加简便和高效。 例如,图像由暗色背景上的亮目标组成,这时可以通过设定适当
2024-09-23 08:08:11 1225
原创 OpenCV系列教程二:基本图像增强(数值运算)、滤波器(去噪、边缘检测)
图像处理技术利用数学运算获得不同的结果。通常,我们使用一些基本操作可以得到图像的简单增强。在本章中,我们将介绍:下面用opencv读取一张新西兰海岸照函数 cv2.add()用于图像的加法运算,其语法为 需要注意的是,OpenCV 加法和 numpy 加法之间有区别:cv2.add() 是饱和运算(相加后如大于 255 则结果为 255),而 Numpy 加法是模运算。 本节讨论图像加法的简单操作——图像与标量相加,这会导致图像亮度的增加或减少,因为我们最终会对每个像素值增加或减少相同的值。(亮度会
2024-09-20 21:28:38 1207 1
原创 Gradio 教程四:Building Generative AI Applications with Gradio
本课程将通过API调用Hugging Face上运行的模型获取响应,所以需要先设置API密钥用于请求响应时的授权。Hugging Face的"API keys" 称为“用户访问令牌”(User Access Tokens)。首先,访问页面创建自己的用户访问令牌。接下来,为了在本地机器上安全地保存访问令牌,可以将将访问令牌保存到环境变量中。在项目的根目录中创建一个.env文件打开.env后保存为了能够在Jupyter Notebook中加载和使用这个 .env 文件,需要安装库。
2024-07-03 10:07:12 1484
原创 Gradio 4.37.1官方教程二:Blocks
Blocks是Gradio的一个底层API,完全使用Python编写。与Interface类相比,Blocks提供了更多的灵活性和控制
2024-06-29 16:37:37 3934
原创 Gradio官方教程一:Gradio生态系统、主要组件及Interface class简介
Gradio 是一个用于快速构建机器学习模型界面的 Python 库,使用 Gradio 内置的共享功能,您可以在几秒钟内分享您的演示或网络应用程序链接,无需任何 JavaScript、CSS 或网页托管经验!
2024-06-25 04:57:00 6767
原创 AI Agentic Design Patterns with AutoGen(下):工具使用、代码编写、多代理群聊
接下来我们定义一个财务分析任务,要求创建一张显示 NVDA 和 TSLA 股票年初至今涨幅的图表,确保代码在 markdown 代码块中,并将图像保存为。. "\Here's the complete Python script: # 接下来是代理给出的代码内容plt.show()import os两个预定义的函数已经编写好了,下面在executor的创建方法中加入functions参数,来告诉代理可以使用这两个函数作为工具调用。
2024-06-08 14:08:49 1903
原创 AI Agentic Design Patterns with AutoGen(上):顺序对话、代理反思
我们还可以检查对话历史和消耗的token数,比如使用pprint库打印对话历史,并检查tokens使用情况和总成本。',你也可以查看此对话的摘要,默认情况下,我们使用最后一条信息作为对话的摘要。')你也可以设置不同的总结的方式,来获得更准确的摘要结果。比如,你可以设置为(大模型总结),并给出具体的总结提示,这样大模型将在对话结束后按照提示总结这段对话的内容。cathy,
2024-06-08 14:08:17 1639
原创 2024.5组队学习——MetaGPT(0.8.1)智能体理论与实战(下):多智能体开发
接下来,我们需要定义三个具有各自动作的Role具有动作,接收用户的指令并编写主要代码具有动作,从的输出中获取主代码并为其提供测试套件具有动作,审查来自输出的测试用例,并检查其覆盖范围和质量整个软件公司的运作机制如下:如上图的右侧部分所示,Role_observe:将从中获取_observeMessage。如果有一个Role_watch的特定Action引起的Message,那么这是一个有效的观察,触发。
2024-05-22 05:43:18 1694
原创 2024.5组队学习——MetaGPT(0.8.1)智能体理论与实战(中):订阅智能体OSS实现
介绍如何使用MetaGPY实现订阅智能体,以及多智能体(软件公司)
2024-05-19 23:58:09 1422
原创 2024.5组队学习——MetaGPT(0.8.1)智能体理论与实战(上):MetaGPT安装,单智能体开发
Agent拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互
2024-05-14 00:07:21 2741 1
原创 LangChain(0.0.340)官方文档十一:Agents之Agent Types
介绍了Agents简单使用方式,以及8种Agent Types
2023-12-29 09:13:15 3314
原创 LangChain(0.0.340)官方文档十:Retrieval——Retrievers(检索器)
介绍了langchain 检索器(Retriever)中的多种检索方法和算法
2023-12-16 21:45:42 3533
原创 LangChain(0.0.340)官方文档九:Retrieval——Text embedding models、Vector stores、Indexing
介绍了Text embedding models、Vector stores和Indexing的基本用法,其中,为文档创建索引可以避免重新计算未更改文档的嵌入,避免将重复的内容写入Vector stores,当源文档更新或删除时自动删除旧版本(可选)
2023-12-14 21:18:05 1913
原创 LangChain(0.0.340)官方文档八:Retrieval——Document transformers
主要介绍了各种Text splitters方法,包括按字符拆分、按文件结构拆分以及按tokens拆分等
2023-12-11 19:27:11 1339
原创 LangChain(0.0.340)官方文档七:Retrieval——document_loaders
介绍了langchain.document_loaders中加载text、html、pdf、csv、markdown、JSON、MP4等各种文件的方法
2023-12-11 19:24:41 3515
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人