- 博客(209)
- 收藏
- 关注

原创 Stable Diffusion系列课程上:安装、提示词入门、常用模型(checkpoint、embedding、LORA)、放大算法、局部重绘、常用插件
介绍了stable diffusion基本功能:安装、提示词入门、常用模型(checkpoint、embedding、LORA)、放大算法、局部重绘、常用插件
2023-07-09 21:23:09
7397
1
原创 PowerBI数据建模基础操作1:数据关系(基数、双向筛选、常规关系、有限关系)与星型架构(维度表、事实表)
行级安全性()在 Power BI 中用于限制特定用户的数据显示,通过在行级别设置过滤器(一般是DAX公式)来控制数据访问权限。Sales(销售表)和Customer(客户表),你的角色被设置为只能看到美国的客户数据。那么当你查询客户表时,系统会自动用公式来过滤数据,你只能看到美国客户的行。历史追踪属性列:比如IsCurrent列,用于标识每个成员是否为当前版本,以便轻松筛选当前维度成员。版本有效期列:存储每个版本的开始日期和结束日期。
2025-03-16 22:47:53
911
原创 MarkdownLint、Markdown All in One 详细使用教程
参考Markdown是一种轻量级标记语言,允许用户使用易读易写的纯文本格式编写文档,并可将其转换为多种不同格式。它特别适合用于撰写技术文档,因为Markdown文档可以与Git或您选择的源代码控制系统一起检查和版本控制。如果你不熟悉Markdown语法,请查看Adam Pritchard的,其中包括标准Markdown语法以及我们将在编辑器中使用的扩展GFM(GitHub Flavor Markdown)。
2025-03-09 13:21:25
1328
原创 Power Query数据清洗
上图结构也很常见,课程和成绩都有多个列,无法直接通过逆透视来实现,此时可以先合并相同类型的列。合并课程1和成绩1两列,分割符可以任选一个,比如选空格。同样的方式把课程2和成绩2、课程3和成绩3合并。2. 选中“姓名”列,逆透视其他列3. 删除不必要的“属性”列,拆分“值”列。上面的步骤很简单,不过如果列数特别多,第一步合并列将会非常繁琐。通过下面这个自定义函数“批量多列合并”,可以一次性将这种结构的表转换为一维表。右键该查询,选择创建函数。弹出“未找到参数”窗口,点击确认。=let。
2025-02-22 19:56:01
1258
原创 Power Query M函数
目前已经有超过700个M函数了,基本上各式各样的数据处理需求都可以使用M函数实现。如果你觉得这些还不够,或者使用起来不是很方便,也可以在PQ中自定义函数。,确定后出现参数调用窗口:这个自定义函数只有一个参数x,函数会生成从1到x的序列。指定为自定义函数后,左边的空查询类型就变成了fx,名称可以根据自定义函数的含义进行重命名,这里把函数名改成mylist。在参数x输入10,点击"调用",就生成了从1到10到一个序列。
2025-02-22 17:49:50
1475
原创 PowerBI教程一:Power BI入门
Power BI是微软推出的数据分析和可视化工具,可以从各种数据源中提取数据,并对数据进行整理分析,然后生成精美的图表,并且可以在电脑端和移动端与他人共享。:Windows 桌面应用程序,用于创建和设计报表,在本地处理数据,适合数据分析师和报表创建者。数据连接和转换:从多种数据源提取数据并进行清理和转换,使用功能强大的 Power Query 编辑器。数据建模:可创建复杂的模型关系、自定义计算、度量指标等。报表设计:提供丰富的可视化工具和布局功能,用于创建详细的交互式报表。发布。
2025-02-11 11:13:57
3701
2
原创 Y3编辑器更新日志
2.0新增多关卡功能,通过主界面-文件-项目管理可以找到多关卡功能的入口。2.0.81版本更新后,首次打开项目时,将读取入口关卡的数据作为使用的配置数据。包含:单位属性、玩家属性、攻防属性、复合属性、英雄经验、伤害公式、局内快捷键。之后在打开任何关卡时,属性定义界面中的配置都将使用项目层级的json文件。(即无论切换至哪个子关卡,查看到的和编辑都是同一份配置数据。
2025-01-19 05:30:43
818
1
原创 Y3编辑器2.0功能指引
KK平台地图反作弊概要《防作弊功能介绍》2.0.81版本更新后,首次打开项目时,将读取入口关卡的数据作为使用的配置数据。包含:单位属性、玩家属性、攻防属性、复合属性、英雄经验、伤害公式、局内快捷键。之后在打开任何关卡时,属性定义界面中的配置都将使用项目层级的json文件。(即无论切换至哪个子关卡,查看到的和编辑都是同一份配置数据。
2025-01-19 05:30:04
1343
1
原创 Y3编辑器功能指引
上文提到的钓鱼数据由于是基于真实数据生成的,所以在查找堆栈的过程中,外挂开发者可能通过钓鱼数据找到真实数据,也能够通过钓鱼数据找到“判断数据是否被修改的函数”,可以理解为鱼竿,然后修改鱼竿的材质,变成一个钛合金鱼竿,使得鱼竿没法正常判断是否中鱼。玩家2的客户端接收到这个UI事件后,根据事件中的按钮ID和资源数量,查找本地维护的逻辑数据(如玩家1的资源数量、玩家2的资源接收状态等),并执行相应的逻辑处理(如减少玩家1的资源,增加玩家2的资源)。那么在后续的逻辑中,他获取的随机值就与其他客户端不同了。
2025-01-19 05:29:14
1821
原创 Y3编辑器地图教程:ORPG教程、防守图教程
血条在游戏中不仅仅只是显示角色的生命值,优秀的血条设计还能提供战斗反馈、衡量战斗能力并增强游戏沉浸感。本教程将介绍怎么利用编辑器制作出我们想要的血条效果。首先在物编中选中任意单位,在表现页面点击血条样式后的编辑按钮,呼出血条编辑器。点击+即可新建一个血条,点击对应按钮添即可加组件(进度条、图片、文本)。进度条:封装多张图片实现血条、蓝条等进度条的显示功能,包括过渡效果(渐变效果)、区分敌我显示、护盾效果、刻度显示等功能,勾选后即可使用。图片:常用来制作类似血条背景、连击点等血条内容。
2025-01-11 02:51:54
1299
原创 Y3编辑器教程8:资源管理器与存档、防作弊设置
参考官方文档《资源管理器》资源管理器是用来管理所有项目资源的资源库,分类页签:切换不同类型资源显示,包括模型、声音、特效、图标、 鼠标样式、 天空球和字体、地形纹理、序列帧与AI专区。鼠标样式:为细节-美术效果-指示器外观中的鼠标选择不同的风格天空球细节-美术效果-天空球中选择最适合的用于地面之外的空间背景。AI专区:支持您根据需求与描述,利用AI技术生成技能图标、立绘、头像与称号,还支持智能抠图和高清修复。点击新建文件夹,通过文件夹对自定义资源进行分类。资源目录:资源所在的文件夹。
2024-12-21 23:26:17
1892
3
原创 Y3编辑器教程7:界面编辑器
参考官方教程《界面编辑器》界面编辑器中包含针对项目GUI (Graphical User Interface,图形用户界面)的各种编辑方法,可以丰富游戏玩家的视觉体验。界面编辑器由导航栏、画板、界面模块、场景UI、控件、元件、画布、属性、事件组成,每个部分层级关系明确,只要设置得当,就可以做出任何界面效果,甚至可以实现纯2D游戏。画板区:在开始做一个界面之前,必须先创建一个画板。控件栏:用于展示每个画板里面的各个控件。节点区。
2024-12-20 21:25:51
1284
1
原创 Y3编辑器教程6:触发器进阶案例
装备限制是RPG类型游戏中常见的机制,比如我们规定玩家只能携带一把武器、一件护甲,或者在FPS游戏中,玩家当前只能持有一把武器,切换另一把武器时,就需要放下当前持有的武器。设置野怪刷新区域,并存储刷怪数据,例如刷怪数量和类型设计刷怪函数,根据刷怪数据执行刷怪设定刷怪机制,即游戏初始化或者怪物被消灭10秒后刷怪(两个触发器)上一步我们放置了区域,并利用自定义键值存储了刷怪数据。下面创建函数库函数,以刷怪区域作为参数,根据其刷怪数据执行刷怪命令。在动作中新建一个循环来创建单位,循环次数为刷怪数量。
2024-12-19 16:57:32
2139
3
原创 Y3编辑器教程5:触发器进阶使用(镜头、UI、表格、函数库、排行榜、游戏不同步)
事件(Event):触发器的导火索,当设定的事件发生时触发器才会执行。条件(Condition):触发执行必须满足的条件。动作(Action):触发执行的结果。当事件被激活,满足了条件后才会执行动作。例如短跑比赛中,信号枪响(事件),只有参赛者(条件)会开始跑步(动作)。变量是可能随时变化的值,比如人的体重或年龄。变量按照作用域分为局部变量和全局变量。局部变量只在单个触发器内有效,而全局变量可以在整个触发器中被调用。变量不能重名变量类型布尔型:True或False。
2024-12-12 07:49:35
1580
原创 Y3编辑器文档4:触发器1(界面及使用简介、变量作用域、入门案例)
触发器是Y3编辑器中实现游戏逻辑的核心组件,它通过“事件-条件-动作”(Event-Condition-Action,简称ECA)的模式来实现各种效果。事件(Event):触发器的导火索,当设定的事件发生时触发器才会执行。条件(Condition):触发执行必须满足的条件。动作(Action):触发执行的结果。
2024-12-11 04:01:24
1793
原创 Y3编辑器教程3:物体编辑器
参考文档《物体编辑器》物体编辑器在操作区上方,选中对象时,可通过勾选使用物编属性,来设置该物件是应用物编属性或是默认属性。物体编辑器中共有9种可编辑的物体,点击界面最左侧的分类列表,可以对相应的摆件进行设置。你可以在分类列表右侧的文件夹列表中对该分类下的摆件进行管理。物体编辑器右侧界面分为数据,表现,触发器三个板块。物体编辑器中共有9种可编辑的物体,点击界面最左侧的分类列表,可以对相应的摆件进行设置。在文件夹列表中可以对该分类下的摆件进行管理。物体编辑器右侧界面分为数据,表现,触发器三个板块。
2024-12-07 22:09:04
1642
原创 Y3编辑器文档2:场景编辑
缩小当前地图可能会删除掉地图之外的一些摆件,包括地形,地势(含纹理,悬崖,高度,涂鸦,裂缝),通行,单位,装饰物,物品,可破坏物,特效,镜头,区域,路径。,此镜头的视角为进入游戏之后的默认视角,无法删除,无法重命名。的地图,可以先在窗口左侧选择一个正方形的地图尺寸,然后在大小设置栏调节地图的宽度(W)与高度(H),或者借助右侧预览图四周的正反箭头,使地图大小朝该方向扩大或缩小。,可以调整装饰物的预设大小,角度,同样可以通过勾选设置为随机,来以随机的大小和角度来摆放装饰物,这样我们的场景会更加真实。
2024-12-07 22:08:28
1839
原创 Y3编辑器官方文档1:编辑器简介及菜单栏详解(文件、编辑、窗口、细节、调试)
在Git官网下载并安装Git for Windows,安装过程详见《Git下载安装教程》。在Github上注册Github账号配置本地Git信息和SSH ,创建本地项目并上传到Github。详见GitHub官方课程《GitHub 详细教程》《一文搞懂git版本库管理》。配置完成后,你可以上传本地项目内容,下载在线项目内容,实现协同开发。在开发简单项目时,大可略过此处,但如果你的游戏设计里涉及伤害与护甲关系、复合属性如何影响角色具体属性(例如角色的力量值同时影响其近战伤害和生命上限)
2024-12-07 22:00:08
2274
原创 win7系统vscode插件功能无法启用,报错“error while fetching extensions.XHR failed”
chatgpt给的回复是:在 Windows 7 系统上出现这种错误,通常是由于网络问题或不兼容的 TLS 协议导致的。VS Code 的扩展市场需要通过 HTTPS 协议访问,而 Windows 7 默认不支持 TLS 1.2,需要安装最新的 Windows。是 Windows 7 的最高版本,它是 Windows Management Framework (WMF) 5.1 的一部分,我们直接安装WMF5.1。公司的用了好几年的电脑装的还是win7,这周刚装vscode准备学下lua。
2024-11-29 03:31:01
1919
4
转载 datawhale 2411组队学习 模型压缩6 :模型蒸馏
随着人工智能的广泛应用,越来越多的场景需要将AI模型部署在边缘设备上,例如智能传感器、物联网设备和智能手机。这些设备通常具有极为有限的计算能力和内存,相比于在云端运行的大型模型,它们无法处理复杂的神经网络。 传统的云端AI依赖于强大的计算资源,如下图中提到的NVIDIA A100显卡,能够提供高达19.5 TFLOPS的浮点运算能力,并配备高达80GB的内存。这类硬件使得模型可以承载更大的参数量并处理复杂任务。 因此,如何将大模型的能力迁移到小设备上,以便在资源有限的条件下高效运行,成为了一个重要的
2024-11-28 06:27:19
107
原创 《datawhale2411组队学习 模型压缩技术7:NNI剪枝》
在线阅读NNI文档NNI(Neural Network Intelligence)是一个开源的自动机器学习(AutoML)工具,由微软亚洲研究院推出。它可以帮助用户自动化地进行超参数调优、神经网络架构搜索、模型压缩和特征工程等任务。NNI 支持多种深度学习框架,如PyTorch、TensorFlow等,并且可以在多种训练平台上运行,包括本地机器、远程服务器、Kubernetes等。NNI剪枝方法描述参考论文基于权重元素的绝对值,对每个权重元素按指定比例进行剪枝。使用最小 L1 权重范数修剪输出通道。
2024-11-28 02:52:35
1187
原创 datawhale 2411组队学习:模型压缩4 模型量化理论(数据类型、int8量化方法、PTQ和QWT)
介绍了不同的数据类型计算方式和表示范围、浮点数精度误差及避免方式。int8量化的两种方法——零点量化和线性量化。最后介绍了训练后量化和量化感知训练。
2024-11-18 20:48:22
1398
原创 datawhale11月组队学习 模型压缩技术3:2:4结构稀疏化BERT模型
在本教程中,我们将对BERT问答模型进行`2:4`稀疏化。在微调后,模型准确性损失很小(F1得分86.92 vs 86.48),但推理速度提升了`1.3`倍。
2024-11-15 23:32:15
1081
原创 datawhale11月组队学习 模型压缩技术2:PyTorch模型剪枝教程
介绍了Pytorch 的prune模块常用剪枝方法,剪枝前后模型的变化,以及最后的自定义剪枝方式。
2024-11-15 23:12:53
1505
原创 datawhale2411组队学习之模型压缩技术1:模型剪枝
介绍模型压缩、模型剪枝的主要概念,最后用代码实践了模型剪枝的标准(weight绝对值、L1范数、L2范数和梯度)和粒度(细粒度、模式级、向量级、Kernel级、Channel级和Filter级)
2024-11-13 20:07:37
1012
原创 Python虚拟环境入门:虚拟环境如何工作、如何自定义创建和管理&管理工具venv、Virtualenv、conda
避免系统污染Linux和macOS等操作系统通常预装有Python,并用于系统内部任务。如果在系统的全局Python环境中安装外部软件包,这些软件包可能与系统相关的软件包混合,导致意外的副作用,影响操作系统的正常行为。此外,如果操作系统进行更新,可能会覆盖和丢失已安装的软件包,导致工作中断和问题。解决依赖冲突不同的项目可能需要使用不同版本的外部库,而在全局环境中只能安装一个版本,所以会导致版本冲突问题。使用虚拟环境可以为每个项目创建独立的环境,从而安装所需的不同版本库,避免版本覆盖和冲突。
2024-11-10 16:42:57
2477
原创 learnopencv系列三:GrabCut和DeepLabv3分割模型在文档扫描应用中的实现
本文分别使用传统视觉算法(GrabCut)和深度学习算法(DeepLabv3)进行文档扫描,然后进行对比测试,最后实现其streamlit web app。
2024-11-09 12:13:46
1081
原创 learnopencv系列二:U2-Net/IS-Net图像分割(背景减除)算法、使用背景减除实现视频转ppt应用
文章目录一、视频转幻灯片应用1.1 什么是背景减除?1.1.1 背景减除简介1.1.2 bgslibrary1.2 OpenCV背景减除技术1.3 差异哈希1.3.1 图像哈希技术1.3.2 dHash算法1.3.3 图像哈希的速度和准确性测试1.4 视频转幻灯片应用的工作流程1.5 项目代码1.5.1 环境准备1.5.2 辅助模块1.5.3 使用帧差分进行背景减除1.5.2 使用OpenCV对背景像素进行统计建模1.5.3 后处理1.5.4 命令行选项1.6 GMG和KNN背景估计的比较1.7 改进与总
2024-11-08 06:37:40
1434
原创 learnopencv系列一:使用神经网络进行特征匹配(LoFTR、XFeat、OmniGlue)、视频稳定化、构建Chrome Dino游戏机器人
图像由多个对象或单个对象组成。每个对象在该图像中都带有不同的描述。图像特征是描述对象独特品质的信息片段,这些特征包括从简单的边缘和角点到更复杂的纹理(比如强度梯度)或独特的形状(比如斑点)。考虑一个人拿着一本书的图像。人类可以通过查看图像帧中的照明条件或对象周围的轮廓和形状来理解某些对象(人或书)存在于框架中。计算机如何解释相同的内容?图像特征的样子为此,我们使用图像特征。我们取每个图像像素并计算这些像素的强度梯度(与周围像素的强度值变化相比)。梯度值高的区域,通常是图像特征(角落或边缘)。
2024-10-30 20:23:03
1351
2
原创 OpenCV系列教程六:信用卡数字识别、人脸检测、车牌/答题卡识别、OCR
随着深度学习的发展,基于卷积神经网络(CNN)的目标检测方法(如YOLO、SSD、MTCNN等)在复杂场景下表现出了更高的精度和鲁棒性。然而,对于资源受限的设备或需要高实时性的场景,OpenCV中的Haar级联分类器依然是一个快速、轻量的选择。上面找出的轮廓有四个点,但顺序是乱的,需要先确认每个点的位置,然后再进行透视变换。为了防止图片中混入其他物体造成检测错误,需要对识别出的轮廓进行判断,确保我们拿到的轮廓是答题卡的轮廓。该算法通过一系列的简单分类器进行多层次的过滤,达到高效检测的目的。
2024-10-25 01:48:05
1087
原创 OpenCV系列教程七:虚拟计算器项目、目标追踪、SSD目标检测
目标视觉跟踪(Visual Object Tracking)是计算机视觉领域的一个重要问题,目前广泛应用在体育赛事转播、安防监控和无人机、无人车、机器人等领域。OTB50是一个包含50个视频序列的数据集,都经过人工标注,首次于2013年提出。这些视频序列涵盖了各种挑战,如光照变化、尺度变化、遮挡等。2015年提出了OTB100,包含了100个视频序列,其中涵盖了OTB50的所有序列。相关的数据集和测试代码库可以在Visual Tracker Benchmark的官方网站下载。
2024-10-22 16:22:38
1268
原创 OpenCV系列教程五:图像的分割与修复
前景和背景的可能性用GMM进行建模,基于这些模型将像素连接到两个超级终端(前景或背景),从而每条边都有一个属于前景或者背景的概率。通过距离变换得到前景的确定区域(sure_fg),通过膨胀得到背景的确定区域(sure_bg),再通过差集得到前景和背景之间的未知区域(unknown),这三部分的明确划分是成功应用分水岭算法的关键。分水岭算法的本质是基于标记的分割,为了让分水岭算法正确地找到物体的边界,需要明确的前景和背景标记以及未确定的区域(即前景和背景之间的模糊区域,需要算法来决定边界)。
2024-10-21 12:55:23
1662
原创 OpenCV系列教程四:图像金字塔、特征检测与特征匹配,图像查找、对齐和拼接
SIFT算法的核心原理可分为四个步骤:特征点检测、特征点定位、主方向确定和特征描述符生成。特征点检测首先,SIFT算法通过构建图像的多尺度金字塔来实现尺度不变性。使用高斯模糊函数对图像进行不同尺度的模糊处理,然后通过差分高斯(DoG, Difference of Gaussian)对模糊后的图像进行处理,获取图像的不同尺度空间。这些空间中的极值点(即在图像空间中比周围像素更亮或更暗的点)被认为是潜在的特征点。特征点精确定位在检测到的极值点中,SIFT对每个点进行精确定位。
2024-10-13 20:26:52
2031
原创 OpenCV系列教程三:图像直方图及阈值处理、图像轮廓、形态学操作、车辆统计项目
形态学()是指一系列用于处理图像形状和结构的算法,其基本思想是利用一种特殊的结构元(本质上就是卷积核)来测量或提取输入图像中相应的形状或特征。形态学操作通常用于预处理、图像分割、特征提取、图像滤波和图像增强等任务。形态学的基本操作包括: 阈值处理的主要意义是将图像中的某些区域分离出来,通常是为了突出前景(如物体)和背景(如场景)。通过二值化,可以将灰度图像转化为黑白图像(即二值图像),使后续的图像分析、边缘检测、目标识别等任务更加简便和高效。 例如,图像由暗色背景上的亮目标组成,这时可以通过设定适当
2024-09-23 08:08:11
1681
原创 OpenCV系列教程二:基本图像增强(数值运算)、滤波器(去噪、边缘检测)
图像处理技术利用数学运算获得不同的结果。通常,我们使用一些基本操作可以得到图像的简单增强。在本章中,我们将介绍:下面用opencv读取一张新西兰海岸照函数 cv2.add()用于图像的加法运算,其语法为 需要注意的是,OpenCV 加法和 numpy 加法之间有区别:cv2.add() 是饱和运算(相加后如大于 255 则结果为 255),而 Numpy 加法是模运算。 本节讨论图像加法的简单操作——图像与标量相加,这会导致图像亮度的增加或减少,因为我们最终会对每个像素值增加或减少相同的值。(亮度会
2024-09-20 21:28:38
1433
2
原创 Gradio 教程四:Building Generative AI Applications with Gradio
本课程将通过API调用Hugging Face上运行的模型获取响应,所以需要先设置API密钥用于请求响应时的授权。Hugging Face的"API keys" 称为“用户访问令牌”(User Access Tokens)。首先,访问页面创建自己的用户访问令牌。接下来,为了在本地机器上安全地保存访问令牌,可以将将访问令牌保存到环境变量中。在项目的根目录中创建一个.env文件打开.env后保存为了能够在Jupyter Notebook中加载和使用这个 .env 文件,需要安装库。
2024-07-03 10:07:12
1740
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人