三分法(整数/浮点数 三分法)

这篇博客介绍了如何利用三分法有效地寻找凸函数的最大值和凹函数的最小值。通过不断缩小搜索区间,算法能够确定极值点的位置。在浮点数和整数情况下,模板代码分别给出了实现细节,并通过比较函数值来判断区间应该舍弃哪一侧。这种方法在数值优化中有着广泛的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明:三分法可以用来查找凸函数的最大(小)值。

  • 如果 lmid 和 rmid 在最大(小)值的同一侧:由于单调性,一定是二者中较大(小)的那个离最值近一些,较远的那个点对应的区间不可能包含最值,所以可以舍弃。
  • 如果在两侧:由于最值在二者中间,我们舍弃两侧的一个区间后,也不会影响最值,所以可以舍弃。

画图就可以看出来 画图就可以看出来 画图就可以看出来


整数三分模板

int l = 1,r = 100;
while(l < r) {
    int lmid = l + (r - l) / 3; // l + 1/3区间大小
    int rmid = r - (r - l) / 3;  // r - 1/3区间大小
    lans = cal(lmid),rans = cal(rmid);
    
    // 求凹函数的极小值
    if(lans <= rans) r = rmid - 1;
    else l = lmid + 1;
    
    // 求凸函数的极大值
    if(lans <= rans) l = lmid + 1;
    else r = rmid - 1;
}
// 求凹函数的极小值
cout << min(lans,rans) << endl;
// 求凸函数的极大值
cout << max(lans,rans) << endl;

浮点数三分模板

const double EPS = 1e-9;
while(r - l < EPS) {
    double lmid = l + (r - l) / 3;
    double rmid = r - (r - l) / 3;
    lans = cal(lmid),rans = cal(rmid);
    
    // 求凹函数的极小值
    if(lans <= rans) r = rmid;
    else l = lmid;
    
    // 求凸函数的极大值
    if(lans <= rans) l = lmid;
    else r = rmid;
}
// 输出 l 或 r 都可
cout << l << endl;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值