题目: AcWing 788. 逆序对的数量
给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。
输入格式:
第一行包含整数 n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式:
输出一个整数,表示逆序对的个数。
数据范围:
1≤n≤100000,
数列中的元素的取值范围 [1,109]。
输入样例:
6
2 3 4 5 6 1
输出样例:
5
做题思路:
假设merge_sort()函数返回有序的数组并且加上了逆序对的数量,则
有三种情况:
1.逆序对在左边 merge_sort(l,mid) 蓝色的情况
2.逆序对在右边 merge_sort(mid+1,r) 绿色的情况
3.当逆序在左右两边,因为左右两边是有序的,如果右边的j小于左边的i则代表j小于左边i后边的所有数,所以逆序对就有mid-i+1,递归会计算所有情况
#include <iostream>
using namespace std;
const int N=100005;
int q[N],tmp[N];
long long res=0;
void merge_sort(int q[],int l,int r)
{
if(l>=r)return;
int mid=l+r>>1;
merge_sort(q,l,mid);
merge_sort(q,mid+1,r);
int i=l,j=mid+1,k=0;
while(i<=mid&&j<=r)
if(q[i]<=q[j])tmp[k++]=q[i++];
else
{
res+=mid-i+1;
tmp[k++]=q[j++];
}
while(i<=mid)tmp[k++]=q[i++];
while(j<=r)tmp[k++]=q[j++];
for(int i=l,j=0;j<k;i++,j++)q[i]=tmp[j];
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&q[i]);
merge_sort(q,0,n-1);
printf("%ld\n",res);
return 0;
}