【Leetcode单调栈】42. 接雨水(有dp优化双指针计算!!双指针,动态规划,单调栈!!)

Leetcode42

1.问题描述

在这里插入图片描述

2.解决方案

解法一:双指针(o(n^2)超时)

1.其实最直接的想法,一行一行或者一列一列的把雨水求出来并且相加就是最后结果,那么比如一列一列应该怎么求呢。
2.其实我们稍做分析就会发现,某一列的雨水高度其实是该列左侧最高的柱子和右侧最高的柱子中最矮的那个柱子的高度减去当前列高度
3.要注意第一个柱子和最后一个柱子不接雨水,代码也就很容易实现了,但是是(o(n^2),提交是超时的

在这里插入图片描述

在这里插入图片描述

class Solution {
   
public:
    int trap(vector<int>& height) {
   
        int sum=0;
        for(int i=0;i<height.size();i++){
   
            //第0列和最后一列不接雨水
            if(i==0||i==height.size()-1) continue;

            //记录左(右)边柱子的最高高度
            int lHeight=height[i];
            int rHeight=height[i];
            for(int j=i-1;j>=0;j--){
   
                lHeight=max(lHeight,height[j]);
            }
            for(int j=i+1;j<height.size();j++){
   
                rHeight=max(rHeight,height[j]);
            }

            //i列雨水高度
            int h=min(lHeight,rHeight)-height[i];
            if(h>0) sum+=h;
        }
        return sum;
    }
};



解法二:动态规划

(1)思路:

1.动态规划的思路和双指针一样,就是利用列计算,当前列雨水面积:min(左边柱子的最高高度,记录右边柱子的最高高度) - 当前柱子高度。
2.但是为了的到两边的最高高度,使用了双指针来遍历,每到一个柱子都向两边遍历一遍,这其实是有重复计算的。我们把每一个位置的左边最高高度记录在一个数组上(maxLeft),右边最高高度记录在一个数组上(maxRight)。这样就避免了重复计算,这就用到了动态规划。
3.当前位置,左边的最高高度是前一个位置的左边最高高度和本高度的最大值。
即从左向右遍历:maxLeft[i] = max(height[i], maxLeft[i - 1]);
从右向左遍历:maxRight[i] = max(height[i], maxRight[i + 1]);
这样就找到递推公式。


(2)思考反思总结:

1.咱们就是说,这动态规划一给出来傻子都能看懂实现,但是一开始怎么就没想到呢,首先第一个点,想到dp就想要去递推把雨水加起来,但是还是那句话,不管什么方法解题,无非就两种按行计算还是按列计算,不能

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值