- 博客(12)
- 收藏
- 关注
原创 西瓜书第五章神经网络
由于电脑记录比较麻烦采用手写笔记的方式来进行记录。主要学习了感知机和神经网络的相关知识,学完之后对损失计算以及反向传播的过程的理解更加深刻了,学会了反向传播的公式推导过程。...
2022-03-27 19:57:18 1559
原创 西瓜书第四章决策树
电脑记录比较麻烦,所以选择了手写笔记的形式。主要学习了决策树的算法原理,以及几种常见的决策树,决策树解决过拟合的方法,进行剪枝处理,如何处理连续属性,处理属性值有缺失的情况,了解了一下多变量决策树。...
2022-03-24 10:28:20 1579
原创 西瓜书第一章与第二章
本文章用来记录自己学习西瓜书时的笔记,方面之后的重温复习。Cha1 绪论1.1 引言机器学习致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。 机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”(model)的算法,即“学习算法”(learning algorithm). 计算机科学是研究关于“算法”的学问,那么类似的,可以说机器学习是研究关于“学习算法”的学问。1.2 基本术语一组记录的集合称为一个“数据集”(data set),其中每条记录是关于一个事件或对象
2022-03-15 10:57:06 812
原创 Task05:树
1. 二叉树的最大深度给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。方法一:深度优先搜索先递归的计算左子树和右子树的最大深度,然后在O(1)时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *lef...
2022-02-22 18:29:24 366
原创 Task:04字符串
1. 验证回文串给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。说明:本题中,我们将空字符串定义为有效的回文串。方法一:筛选+判断最简单的方法事对字符串s进行一次遍历,并将其中的字母和数字字符进行保留,放在另一个字符串sgood中。然后,判断sgood是否是一个普通的回文串即可。判断回文串的方法有两种,第一种是使用语言中的字符串翻转API得到sgood的逆序字符串sgood_rev,只要这两个字符串相同,那sgood就是回文串;第二种是使用双指...
2022-02-21 18:24:26 156
原创 Task:03栈
1. 有效的括号给定一个只包括 '(',')','{','}','[',']'的字符串 s ,判断字符串是否有效。有效字符串需满足:左括号必须用相同类型的右括号闭合; 左括号必须以正确的顺序闭合。class Solution {public: bool isValid(string s) { stack<char> t; for(int i=0; i<s.size();++i){ if(s[i]=='(' |.
2022-02-19 21:22:15 325
原创 Task02:链表
1. 移除链表元素给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点 。class Solution {public: ListNode* removeElements(ListNode* head, int val) { struct ListNode* dummyHead = new ListNode(0, head);//建立头节点 struct ListNode*
2022-02-17 21:15:57 174
原创 Task01:数组
1. 两数之和给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那两个整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。class Solution {public: vector<int> twoSum(vector<int>& nums, int target) { int n=nums.size
2022-02-15 20:02:41 572
原创 Vision Transformer(ViT)
论文地址:https://arxiv.org/pdf/2010.11929v2.pdf基于纯自注意力机制的Transform模型,现在在自然语言处理领域占据着首要的地位,它主要是在大型文本语料库上进行预训练,然后在较小的特定任务的数据集上进行微调。而在计算机视觉领域,卷积神经网络仍然占主导地位,受Transformer的影响,很多新的基于注意力机制的架构的想法也用进了计算机视觉当中,比方说有的将CNN与自注意力机制相结合,有的使用轴注意力来完全替代卷积操作。Vi...
2022-01-10 22:18:15 1370
原创 Transformer
Transfromer是第一个完全依赖自注意力机制来计算其输入和输出表示的序列转录模型,不使用基于序列的RNN和CNN结构。Model Architecture:Transformer使用编码器-解码器的架构,在每一个编码器和解码器中堆叠使用self-attention, point-wise, fully connected层。1. 编码器(Encoder)和解码器(Decoder)的架构编码器是由6个相同的层组成,每一个层有两个子层,第一个子层是多头自注意力机制(multi-head
2022-01-09 23:42:33 768
原创 更改Colab的CUDA以及cudnn
Colab的CUDA版本是11.1,而我需要10.0的CUDA版本,更改CUDA版本过程如下:1. 首先查看当前Colab的CUDA版本!nvcc --version2. 卸载当前Colab的CUDA#Uninstall the current CUDA version!apt-get --purge remove cuda nvidia* libnvidia-*!dpkg -l | grep cuda- | awk '{print $2}' | xargs -n1 dpkg --p
2021-12-29 11:17:28 11467 20
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人