自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 资源 (2)
  • 问答 (7)
  • 收藏
  • 关注

原创 TX移相器校准理论

位于mmWave Studio安装目录下的文件的详细解释。使用这些脚本和校准流程的用户应熟悉MMWCAS-RF-EVM/MMWCAS-DSP-EVM的基本操作,并熟悉mmWave Studio环境。

2022-05-01 17:05:07 2051 2

原创 毫米波雷达器件ADC原始数据捕获

毫米波雷达器件ADC原始数据捕获本应用程序报告演示了如何解释使用Capture Demo或Mmwave Studio捕获的原始模数转换器(ADC)数据。针对不同的硬件设置,分别讨论了获取原始ADC数据的格式。Matlab代码片段提供给需要开发自定义代码进行数据处理的工程师。

2022-04-28 15:38:40 7955 5

原创 论文翻译--毫米波三维全息摄影的轻量级FMIST启发稀疏重建网络(1)

提出了一种轻量级的基于模型的深度学习框架(LFIST-Net)。首先,将单频全息成像技术集成到FISTA中作为传感核,避免了大规模的矩阵乘法。随后,将基于内核的FISTA (KFISTA)映射为层固定、参数可学习的LFIST-Net,并将权值放宽为层变化的。对LFIST-Net中的关键参数(步长、阈值和动量系数)的更新采用软加函数进行正则化,保证了算法的非负性和单调性。在三维全息实现方面,采用“1-D + 2-D”方案,其中匹配滤波(MF)和训练有素的LFIST-Net对方位片进行距离聚焦和重建。在不损失效

2022-04-25 09:55:43 1809

原创 英文文献翻译-----改进三维网格分析和分割的马尔可夫随机场

为了提高压缩、水印或简化等常见处理操作的效率,网格分析和聚类已成为重要问题。在此背景下,我们提出了一种新的聚类/标记三维网格的方法,给定任何与其顶点相关的标量值域(曲率,密度,粗糙度等)。我们的算法是基于马尔可夫随机场,图形概率模型。该贝叶斯框架允许(1)在聚类中同时集成属性和几何,(2)由于随机场的马尔科夫特性,仅使用局部交互来获得最优全局解。我们定义了新的观测模型和先前的三维网格模型,采用图像处理方法,在空间一致性方面取得了很好的效果。

2022-04-22 22:08:12 1865

原创 翻译英文文献----利用MAP-MRF模型改进三维网格分割算法

翻译英文文献----利用MAP-MRF模型改进三维网格分割算法论文特点:在MRF中加入先验,鼓励解满足平滑条件。结合似然和先验来生成位于分割边界上的网格顶点的后验分布。然后将改进后的分割作为最大化一个后验分布的顶点集合,称为MAP-MRF估计。

2022-04-22 17:26:58 3406 1

原创 论文翻译-----《马尔可夫随机场在距离传感中的应用》

论文翻译--马尔可夫

2022-04-20 16:08:25 3033

原创 MRF马尔科夫链在图像去噪中的应用(python+matlab)

思路:1转换为二进制图像并覆盖。2生成名为的翻转图像。3使用 ICM 对翻转的图像进行降噪。代码:结果:注意知识点:1原图:quzao3.jpg我试着用其他图做了这个实验,但是有灰色区域就会出现问题。2最终成像时:给图片加标题,如语句:prop = font_manager.FontProperties(fname=r'E:\学习代码\ttf字体\华康娃娃体.ttf'),其中的华康娃娃体.ttf需要下载,用的时候指定路径即可。3 ICM...

2022-04-18 20:26:40 2343

原创 TI官网资料--MMWCAS-RF 评估模块 (EVM) +毫米波级联成像雷达 DSP 评估模块

TI官网资料--MMWCAS-RF 评估模块 (EVM) +毫米波级联成像雷达 DSP 评估模块

2022-04-03 11:59:03 2802 4

DCA1000安装视频笔记,中文翻译版的

TI里rf与svm安装时用GUI,安装步骤以及注意事项。适合新手小白

2022-04-28

改进三维网格分析和分割的马尔可夫随机场

英文文献,他的中文翻译可看其他博文: 为了提高压缩、水印或简化等常见处理操作的效率,网格分析和聚类已成为重要问题。在此背景下,我们提出了一种新的聚类/标记三维网格的方法,给定任何与其顶点相关的标量值域(曲率,密度,粗糙度等)。我们的算法是基于马尔可夫随机场,图形概率模型。该贝叶斯框架允许(1)在聚类中同时集成属性和几何,(2)由于随机场的马尔科夫特性,仅使用局部交互来获得最优全局解。我们定义了新的观测模型和先前的三维网格模型,采用图像处理方法,在空间一致性方面取得了很好的效果。对所有模型参数进行估计,从而实现在合理时间(几秒)内工作的全自动过程(唯一需要的参数是集群的数量)。 ———————————————— 版权声明:本文为CSDN博主「佩佩想做程序猿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_46559411/article/details/124355840

2022-04-23

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除