英文文献翻译-----改进三维网格分析和分割的马尔可夫随机场

2 篇文章 0 订阅
2 篇文章 0 订阅

改进三维网格分析和分割的马尔可夫随机场

摘要

为了提高压缩、水印或简化等常见处理操作的效率,网格分析和聚类已成为重要问题。在此背景下,我们提出了一种新的聚类/标记三维网格的方法,给定任何与其顶点相关的标量值域(曲率,密度,粗糙度等)。我们的算法是基于马尔可夫随机场,图形概率模型。该贝叶斯框架允许(1)在聚类中同时集成属性和几何,(2)由于随机场的马尔科夫特性,仅使用局部交互来获得最优全局解。我们定义了新的观测模型和先前的三维网格模型,采用图像处理方法,在空间一致性方面取得了很好的效果。对所有模型参数进行估计,从而实现在合理时间(几秒)内工作的全自动过程(唯一需要的参数是集群的数量)。

1. 介绍

在过去十年中,电信、图形硬件和几何处理领域的技术进步促进了通过互联网操作和传输的数字数据的发展。目前,静态和动态三维网格构成了新兴的多媒体内容。因此,三维模型受到各种各样的处理操作,如压缩、简化、逼近、索引或水印。提高这些过程效率的一个关键问题是真正理解多边形网格背后的3D对象。为了达到这个目标,解决方案是对形状进行深入分析(在几何标准方面)和/或使用一些分割/分割算法提供一个结构。然后,这种分析和/或分区可以大大提高应用程序的效率上述引用的条款。例如,形状的一些局部测量(如粗糙度或曲率)可以通过将伪像集中在显示高掩蔽度的物体部分,从而有利地用于改进压缩或水印算法。另一个例子是使用网格的先验分割来促进网格的重新划分[CSAD04]或近似[LDB07]。局部分析也可用于为部分形状检索和索引提供形状签名[TVD07, GCO06]。这种形状分析导致创建不同类型的属性,这些属性通常与网格的顶点有关(见图1):曲率[CSM03]、粗糙度[Lav07]、显著性[L VJ05]、峰或脊[LZH * 07]等。此外,在一些特定的应用中,如科学可视化中,其他外部属性可以与网格元素相关联,如温度或密度。

为了在进一步的处理(压缩、索引、水印等)中正确使用或正确引导一些分割/分解算法,必须使用聚类算法对这些属性(内在或外在)进行适当的过滤、分类或量化。划分包括根据其属性值(可能是标量或向量)将一个适当的离散标签(在给定集合中)关联到每个顶点。要进行良好的集群,必须解决两个重要问题:

•在聚类过程中,将几何信息和属性信息结合起来考虑似乎很重要。事实上,许多简单的技术,如阈值分割或k均值聚类,只利用特征空间的信息对每个顶点进行分类;这可能会导致干扰进一步过程的噪音或伪影。例如,在[LDB05]中描述的分割算法中,只根据属性(曲率)值对顶点进行聚类(在曲率空间中使用K-Means),然后区域生长过程使用这种纯属性聚类来创建空间区域。然而,它产生了嘈杂的过度细分,需要进一步复杂的合并过程。考虑到一些几何约束的更好的聚类可能会大大改善区域增长的结果。•另一个重要的问题是处理这种集群,以一种全局的方式。事实上,许多现有的聚类过程都是贪婪的,依赖于初始种子位置,因此可能会导致非最优解,因此鲁棒性不强。一种解决方案是以全局方式进行集群。

在本文中,我们研究了使用概率图形模型来解决这两个问题:将顶点之间的空间依赖性纳入聚类过程,同时提供一个全局最优解。特别地,我们的框架基于马尔可夫吉布斯随机场(MRF)。主要思想如下:对于给定数量的集群和与任何类型的属性或特征(曲率,粗糙度,显著性等)相关联的3D网格,我们的方法为每个顶点提供了适当的集群标签。这些标签将被认为是最优的,因为它们在整个网格上最大化了全局概率,同时考虑了属性值和空间关系(几何)。这个框架可以很容易地适应任何类型的属性(标量或向量),位于任何类型的网格元素(顶点、边或面)。本文的结构如下:第2节介绍了一些已有的相关工作,第3节、第4节和第5节分别详细介绍了我们将马尔科夫范式应用于三维网格、我们的先验模型和观测模型以及全局模拟退火优化算法。第6节给出了参数估计,最后第7节给出了在不同属性和不同标签数的网格上的一些实验和结果。

 图1:一些顶点属性的例子,用于动态网格(42K个顶点)。从左到右:原始模型、粗糙度、局部曲率(测地线半径=包围盒最大长度的1%)、全局曲率(测地线半径= 5%)。值由蓝色(低)到红色(高)表示。

2. 相关工作

2.1. 网格聚类与分割

本文区分了聚类和分割。集群通过考虑一些属性值,将每个网格元素(例如顶点)与一个适当的集群标签相关联。通常,这个过程只考虑属性空间,并允许量化或过滤这些值以供进一步使用(压缩、分割等)。主要的方法有k均值法、均匀量化法或阈值法。相反,网格分割提供了一个分解成几个连接的空间区域:为了获得区域(通常同胚磁盘)共享一些共同的属性,这些facet被重新组合。一些作者[SSGH01, CSAD04]使用平面度标准来合并区域中的面,而另一些作者[LPRM02, LDB05]则考虑均匀曲率性质。一些更高层次的算法考虑特征点[KLT05],骨架[TVD06],图[KT03],光谱分析[LZ04]。有很多针对3D网格的分割算法,最新的技术可以在[AKM * 06]中找到。纯聚类方法的主要问题是只考虑属性空间,没有任何几何约束。与之相反,现有的分割算法仅根据几何形状对网格进行分解;不能在算法中引入额外的属性数据来修改结果。此外,除了一些最新的算法[CSAD04]外,大多数算法都是贪心的,因此会陷入非最优局部极小。我们的基于MRF的方法允许通过同时考虑属性值和几何形状来聚类3D网格,而且它是一种全局方法,提供了一个优化的解决方案。此外,一些分割算法都是基于先验聚类的[LDB05, MDKK06, JM07],因此改进几何约束聚类应该会大大提高相应的分割。Shamir等人的最新方法[SSCO06]也通过将Meanshift算法应用于3D网格,提供了一种混合属性-几何聚类框架。他们得到了很好的结果,但是处理时间很长(几分钟),而我们的方法更快(几秒钟)。

2.2马尔可夫随机域

马尔可夫随机场有着悠久的历史,我们向读者推荐Geman和Geman [GG84]的开创性工作,以及Li写的书,以获得对该理论的广泛而深刻的概述[Li01]。它们被广泛应用于图像处理,特别是分割和图像恢复,甚至是最近的事[SC06,WC07]。特别地,这个贝叶斯框架被用来将观察过程的模型(即给定一个标签配置的观察的可能性)与空间相互作用的模型(先验知识)结合起来。据我们所知,只有两位作者研究了三维网格处理中的MRF: Willis等人[WSC04]研究了表面变形,Andersen [And07]研究了网格平滑

3.马尔可夫过程的框架

马尔可夫随机场[Li01]是一种图形模型,用于寻找图的节点的最优标记——在某种意义上的最优将在后面定义。一般来说,图可以是规则的,也可以是不规则的,标签可以是连续的,也可以是离散的。正则图是图像处理中常用的图形[GG84]。在我们的例子中,图对应于所考虑的网格的不规则图形结构,因此我们考虑一个无向图G = {G,E},其中G是网格的顶点(点)集,E是网格的边集。因此,我们的目标是为网格的每个顶点分配最正确的标签(即图中的每个位置)。马尔科夫随机场也是概率模型,它们为不同的可能结果分配概率,即顶点集合的每个可能标记都有一个概率。因此,每个位点(即顶点)s∈G赋一个离散随机变量Xs,取有限集Λ, C = |Λ|表示类的数量。XG,简称X,表示图的随机变量域。字段X的所有可能配置的空间表示为Ω = Λ|G|。通常情况下,大写字母表示随机变量或随机变量字段,小写字母表示随机变量值或随机值字段的实现。特别地,如果方便的话,P(X = X)可以简写为P(X)。概率图模型考虑了图的连通性。虽然搜索的是全局最优解,即搜索的是最佳全局标记,但概率P(X = X)是通过局部属性定义的,由随机场的马尔科夫属性反映出来:随机变量的场X是一个MRF当且仅当

 Ni是站点s的邻域,换句话说,站点s的变量有条件地独立于给定站点s的邻居变量,另一个站点r的变量。注意,条件独立并不意味着独立。两个变量x和Xr是相关的,即使它们被图中很长的最小路径隔开;然而,条件独立性意味着,如果已知xn的实现,xr的知识不为xs的推理提供额外的信息。在图上,每个邻域定义了一组小团,其中一个小团是全连通子图。对于三角形网格,存在3种类型的团:顶点(1-点团)、边(2-点团)和三角形(3-点团)。根据Hammersley-Cifford定理[HC68] [Bes74], MRFs的联合概率密度函数等价于定义在极大团上的Gibbs分布,即为

 式中Z =∑x e−U(x)/T为归一化常数,T为温度因子,为简单起见,可设为1,U(x) =∑c∈c Vc(x)为用户定义的能量函数,定义在团的局部相互作用上,C是图的所有可能团的集合,Vc(x)是在单个团C上定义的实现x的势能。

概率P(x)编码了对结果的先验知识(独立于实际观察)-它给我们一个给定的解决方案是否可能的信息。通过用户定义的能量势注入与应用相关的知识。常用的能量势倾向于创建同质区域的分类(见第4节)。具体来说,这是在标记中注入空间约束的一种方式。分割结果取决于每个站点的观测值,记为已知随机变量Ys。具体来说,这些观测值对应于每个顶点的属性值。我们假设对这些变量有以下广泛使用的统计假设(如果需要,这些假设可以在条件随机场框架中提出问题来放宽):每个观察变量y与一个隐藏变量x相关,并且在相关隐藏变量实现的情况下,有条件地独立于其他变量:

 属性1和3在图2所示的依赖关系图中进行了说明,其中每个阴影部分的观察变量仅连接到其对应的非阴影部分的隐藏变量。MRF定义的概率P(x)与观测值Y无关,可以解释为贝叶斯框架中的先验概率,由类似-完成已知(3)中定义的隐藏标签p(y|x)的观测值。后面的概率取决于观测模型,我们将在第4节中定义该模型。我们感兴趣的是在给定观测节点的情况下,推断出隐藏变量最有可能实现的情况,可以使用贝叶斯规则得到:

 这个标记ˆx,被称为最大后验概率或MAP估计,将被认为是我们的网格的最优聚类,鉴于其属性。结果取决于先验模型和观测模型,它们分别驱动属性的权重和几何的权重。如果我们只考虑观测模型,我们在属性空间中得到一个简单的分类(像K-Means算法);先前的模型允许在聚类中注入一些空间约束。下一节详细介绍这些模型的构造。

 图2:马尔可夫随机场的依赖关系图。阴影节点被观察,空节点被隐藏。

4. 先验和观察模式

如上所述,先前模型的作用是将分类决策规范化,从而有利于同质区域。为此,我们修正了多级logistic模型[Li01],其势能函数定义为

 其中αi (i = 1. . c)和β是参数,C3是图的3点团的集合,即网格的三角形集合,δi, j是给定的Kronecker delta

 而γ(c)是一个有利于齐次标签三角形的函数,给定为:

 每个参数αi控制一个给定标签i的先验概率,而参数β控制结果的平滑程度。观测模型为(可能是多变量)高斯模型,其概率密度函数如下:

 其中,µxs和Σxs分别为x类的均值向量和协方差矩阵。在我们的实验中,使用标量观察,因此,每个类需要一个单一的平均值和一个单一的方差。MRF先验模型P(x)(一个分布)和可能性P(y|x)(一个密度)的组合可以被视为在一个新的图上定义联合概率密度P(x,y)的一个新的MRF:图2所示的依赖图。新图包含原始图(网格)作为子图,以及额外的站点(观察变量)和每个x和y对额外的2个站点的cliques,其潜在函数如下:

 5. 优化

为了计算估算ˆx,需要执行(5)中的最大化。不幸的是,该函数不是凸函数,标准梯度下降法很可能会返回一个非全局解。模拟退火已被证明能在一定条件下返回全局最优[GG84]。模拟退火得名于物理过程,它通过降低温度使粒子(如合金中的原子)放松到低能量状态。同样,对于非凸函数的优化,模拟退火过程降低了一个(虚拟)温度因子。在退火过程中,改变顶点的标签,使估计值更接近模型。然而,在优化过程中包含了一定数量的随机性,这使得系统在某些时候改变到更不利的估计。这种随机性取决于温度因子:它在开始时设置得相对较高,以允许系统“跳”出局部最小值,然后随着温度因子逐渐降低。更精确地说,在退火过程中,每个顶点的能量势能是在随机选择一个新状态(即一个新标签)之前和之后计算的。是否保留新状态的决定基于该值

 式中,∆为s位点x变化前后的后验能势U(xs,xNs,ys)之差:

 如果q > 1,则改变是有利的和被接受的。如果q < 1,即如果解决方案是“更差”,那么它以概率q被接受,这取决于全球温度因子T。温度的逐渐降低保证了这样做的次数越来越少。对于冷却计划,我们使用了[DHS00](第356页)中的建议,其中温度T设置为

 式中,K为控制冷却过程速度的常数,i为当前迭代。开始温度必须足够高,才能以一定的概率转换到能量非常不利的状态。它可以作为最大可能电位差的函数来计算,正如我们在之前的工作中所做的[WD02]。

6. 参数估计

由于没有标签字段X的实现,先验模型和观测模型的参数必须从观测数据中估计或从标签字段的中间估计中估计。在这项工作中,我们选择以监督的方式估计由初始k-Means聚类创建的中值过滤标签字段的参数。可供选择的方法是,例如,迭代条件估计[BP93]或平均场理论[Zha92]。对于先验参数αi和β,我们采用最小二乘估计,这是由Derin等人首先提出的[DE87]。单个站点的势能函数的前一部分s(12)可以重写为

 θp为包含αi和β的理想先验参数向量,N(xs,xNs)为向量值函数,定义为:

由(14)和MRFs条件概率的基本定义可知: 

 可以推导出以下关系[DE87]:

 其中x0s是具有相同邻域标签xn的x的不同标签。(17)的RHS可以使用直方图技术来估计,通过计算标签字段中出现的小团体标签的数量。考虑到xs、x0s和xNs的所有可能组合,(17)表示一个过确定的线性方程组,可以写成矩阵形式如下:

 其中N为M ×C + 1矩阵,对于具有相同邻域标记xNs的不同标签xs、x0s,其行包含向量[N(xs,xNs)−N(x0s, fNs)]T, M为数据点个数。向量p的元素是(17)的RHS的对应值。系统(18)可以使用标准最小二乘技术来求解,例如Moore-Penrose伪逆。出于实际目的,请注意用概率P(xs,xNs)和P(x0s,xNs)等于0的一个或两个标记对是不能使用的。此外,Derin等人建议丢弃标记计数低的方程,以使估计更稳健。为了数值稳定性,我们将其中一个参数αi设为1。虽然α我可以解释为先验概率的对数,没有必要,指数的总和是1,因为最终的缺失或概率质量过剩将分区吸收系数Z(2)。作为一个例子,集群的马尔可夫模型的参数呈现在图5:α1 = 1, α2 = 0.979153, β = 2.673553。观测模型的参数使用经典的极大似然估计:每一类的均值和方差值。它们是由初始k-means聚类创建的中值过滤标签字段的结果经验估计的。

7. 完整算法及结果

算法1总结了三维网格的MRF聚类算法。根据经验确定启动温度T(1)和速度K分别为4和0.97;这些值在我们的实验中得到了很好的结果。这些参数的微小变化不会影响优化结果[DHS00]。对于模拟退火,我们选择imax = 50次迭代;这个数字必须足够高,以确保抽样算法的收敛性。显然,这取决于模型的具体形式,特别是依赖图中的依赖链的长度等。据我们所知,没有工作能够从训练数据中学习到这个数字,因此我们根据经验确定了必要的迭代次数。

 输入:C(标签数量),T(1)(启动温度),K(冷却速度),imax(迭代次数)输出:估计的标签字段ˆx•使用属性值y的k-Means聚类对标签x进行初始化。•标签x的中值过滤•x对观察和先验模型的参数估计(见第6节)。•ˆx估计优化(5):通过imax迭代,使用T (1), K和参数(见第5节)模拟退火。

为了证明我们的算法在网格聚类方面的效率,我们对5K到40K的不同网格和不同数量的簇(从2到5)进行了实验。我们特别关注曲率属性:一个与每个顶点关联的标量值,但我们的算法适用于任何其他值或值的组合(如图6中的粗糙度)。表1详细说明了图中所示的不同对象的处理时间。对于一个简单的模型(<10K个顶点),MRF优化只需要不到10秒。对于更复杂的模型(约40K个顶点),处理时间大约为30秒。我们选择了50次迭代进行模拟退火优化,因为在我们的示例中,这个值似乎足以达到收敛。图3说明了最大电流的聚集vature(测地线半径= 8%)的Dyno-10形状(10K顶点)成5簇。标记非常干净,没有任何噪音,每个区域都表现出属性和空间的一致性。我们还将我们的MRF聚类与KMeans算法进行了比较。图4显示了根据曲率将Blade模型(40K个顶点)聚类为3个簇。我们的MRF算法几乎完全消除了K-Means分类引入的噪声。因此,进一步分割使用这个空间连贯的聚类将会容易得多。我们进行了实验在一个细分场景:曲率值(测地线半径= 6%)Dyno-5模型(5 k个顶点)聚集成2集群使用两种算法(见图5),然后我们进行了一个空间分割(每个方面影响到一个地区号)使用该地区从[LDB05]。我们的聚类结果是非常干净的,大约有10个区域对应于Dyno的重要部分(手臂,腿,头等)。相反,在考虑简单K-Means分类时,由于噪声的影响,会导致较差的过分割。最后,图6说明了狮子头模型(39K个顶点)根据其粗糙度图(使用[Lav07]计算)聚类到2个簇。粗糙度表示表面上局部几何噪声的数量。事实上,一个有纹理(或粗糙)的区域能够比光滑区域更好地隐藏几何扭曲。因此,该方法可以很好地集成到水印算法中,以集中对目标粗糙部分的几何修正。其用法的一个例子是将对象分类为两个簇:相当粗糙和相当平滑,以便相应地对区域进行水印。为了在这种情况下正确使用,聚类必须对某些几何攻击具有鲁棒性,并且与几何结构保持一致(以保持水印不可见)。这就是MRF聚类的情况,由于全局优化,它提供了一个清晰的分解,同时对轻微的几何攻击具有鲁棒性。

图4:从左到右:Blade模型(40K个顶点),曲率标量场(测地半径= 0.5%),K-Means聚类(3个簇),我们的MRF算法聚类(3个簇)。

 

图5:从左到右:Dyno-5网格(5K个顶点)的曲率标量场(测地线半径= 6%),2次聚类使用K-Means和区域生长结果,2次聚类使用MRF和区域生长结果。

 图3:从左到右:Dyno-10网格(10K个顶点),曲率标量场(测地线半径= 8%),使用我们的MRF算法聚类(5个簇)。

8. 结论与未来工作展望

提出了一种新的基于马尔可夫随机场的三维网格聚类贝叶斯框架。该方法允许在全局优化过程中,通过使用适当的先验模型和观测模型,在标记中集成属性值和空间约束。结果表明,该框架的效率,从而可以相当有用的三维网格分析或分割。在计算机视觉中,层次马尔可夫模型已被广泛应用为了加快标签字段的优化而引入。Bouman和Shapiro是最早提出这种因果层次模型的人之一[BS94]。一个四叉树模型之间的空间相互作用的叶片像素点通过他们的相互作用在尺度上的邻居。我们计划将这种层次马尔可夫模型引入到三维网格标记中。然而,与二维图像相反,三维网格拥有任意的拓扑结构和不规则的采样,这使得分层分解非常困难。解决方案可能包括使用简化算法[GH97]或基于几何的分解,如KD-Trees [GD02]。

 图6:从左到右:狮子头模型(39K个顶点),粗糙度标量场,使用K-Means聚类(2个簇),使用我们的MRF算法聚类(2个簇)。

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值