[ 题目描述 ]:
[ 思路 ]:
- 暴力求解:从左开始,挑选一个范围,然后将他与后面的所有范围比较,有交叉就合并,没有交叉就继续比较下一个
- 并且,标记合并过的范围,使得其不参与后续范围的比较
- 调试的时候发现,针对这种多包容案例,是无法正确求解的
- 其关键之处就是在使用第一个范围 [2,3] 进行扫描时,会将 [1,10] 移除,导致后续比较出错
int** merge(int** intervals, int intervalsSize, int* intervalsColSize, int* returnSize, int** returnColumnSizes) {
if(intervalsSize==1){
*returnSize=1;
*returnColumnSizes = malloc(sizeof(int) * 1);
*returnColumnSizes[0]=2;
return intervals;
}
int** res=(int**)malloc(sizeof(int*)*intervalsSize);
*returnColumnSizes = malloc(sizeof(int) * intervalsSize);
int count=0;
for(int i=0;i<intervalsSize;i++){
int start=intervals[i][0],end=intervals[i][1];
if (start==-1 || end==-1) {
continue;
}
for(int j=i+1;j<intervalsSize;j++){
if (intervals[j][0] == -1 && intervals[j][1] == -1) {
continue;
}
if (intervals[j][0] <= end && intervals[j][1] >= start) {
if (intervals[j][0] < start) start = intervals[j][0];
if (intervals[j][1] > end) end = intervals[j][1];
intervals[j][0] = -1;
intervals[j][1] = -1;
}
}
res[count]=(int*)malloc(sizeof(int)*2);
res[count][0]=start;
res[count][1]=end;
(*returnColumnSizes)[count++] = 2;
}
* returnSize=count;
return res;
}
- 如果把案例中 [1,10] 放在整个 intervals 的第一个,那么就不会出错了
- 所以可以先对 intervals 中每个范围的按照其下限,进行一个排序
- 排序后,范围的比较也就只用比较当前的上限 end 与下一个范围的下限 start 的大小了
- start > end:不存在交界,得出一个无交叉的范围
- start < end:存在交界,合并,继续比较下一个范围
- 运行如下
int cmp(const void* a, const void* b) {
int* A = *(int**)a;
int* B = *(int**)b;
return A[0] - B[0];
}
int** merge(int** intervals, int intervalsSize, int* intervalsColSize, int* returnSize, int** returnColumnSizes) {
qsort(intervals, intervalsSize, sizeof(int*), cmp);
int** res = (int**)malloc(sizeof(int*) * intervalsSize);
*returnColumnSizes = (int*)malloc(sizeof(int) * intervalsSize);
int count = 0;
int start = intervals[0][0];
int end = intervals[0][1];
for(int i = 1; i < intervalsSize; i++) {
if(intervals[i][0] > end) {
res[count] = (int*)malloc(sizeof(int) * 2);
res[count][0] = start;
res[count][1] = end;
(*returnColumnSizes)[count++] = 2;
start = intervals[i][0];
end = intervals[i][1];
} else {
if(end < intervals[i][1]) {
end = intervals[i][1];
}
}
}
res[count] = (int*)malloc(sizeof(int) * 2);
res[count][0] = start;
res[count][1] = end;
(*returnColumnSizes)[count++] = 2;
*returnSize = count;
return res;
}
[ 官方题解 ]:
- 一、排序,思路基本与上面相同
# python3
class Solution:
def merge(self, intervals: List[List[int]]) -> List[List[int]]:
intervals.sort(key=lambda x: x[0])
merged = []
for interval in intervals:
# 如果列表为空,或者当前区间与上一区间不重合,直接添加
if not merged or merged[-1][1] < interval[0]:
merged.append(interval)
else:
# 否则的话,我们就可以与上一区间进行合并
merged[-1][1] = max(merged[-1][1], interval[1])
return merged