Downstream task 是指在自然语言处理(NLP)领域中,建立在预训练模型之上的具体应用任务。
在预训练模型的背后,有一个庞大的神经网络,它通过大规模的文本数据进行了训练,学习了语言的模式和语法规则。这个预训练的模型能够捕捉一般性的语言表示。
然后,为了解决特定的任务,比如文本分类、命名实体识别、语义理解等,这个通用的预训练模型会被用作起点。这个过程就是所谓的 “downstream task”。在这个阶段,预训练模型的参数可能被微调,以适应特定任务的需求。
downstream task通常包括了两个主要步骤:首先是预训练模型,这是在大规模数据上学习语言表示;然后是微调,这是在特定任务的数据上对预训练模型进行调整,以提高在该任务上的性能