32位系统中整数的表示范围

本文详细探讨了32位计算机中带符号整数的表示,包括正数、负数以及0的原码、反码和补码形式。指出最大正整数为2147483647,而最小负整数是-2147483648,解释了-0的存在以及补码表示中的溢出情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机中32位int类型变量的范围,其中int类型是带符号整数。

正数在计算机中表示为原码,最高位为符号位:

1的原码为0000 0000 0000 0000 0000 0000 0000 0001

2147483647的原码为0111 1111 1111 1111 1111 1111 1111 1111

所以最大的正整数是2147483647

负数在计算机中表示为补码,最高位为符号位:

-1:

原码为1000 0000 0000 0000 0000 0000 0000 0001,

反码为1111 1111 1111 1111 1111 1111 1111 1110,

补码为1111 1111 1111 1111 1111 1111 1111 1111

-2147483647:

原码为1111 1111 1111 1111 1111 1111 1111 1111,

反码为1000 0000 0000 0000 0000 0000 0000 0000,

补码为1000 0000 0000 0000 0000 0000 0000 0001

所以最小的负数是-2147483647吗?错,不是。

在二进制中,0有两种表方法。

+0的原码为0000 0000 0000 0000 0000 0000 0000 0000,

-0的原码为1000 0000 0000 0000 0000 0000 0000 0000,

因为0只需要一个,所以把-0拿来当做一个最小的数-2147483648。

-2147483648的补码表示为1000 0000 0000 0000 0000 0000 0000 0000,在32位没有原码。

注意,这个补码并不是真正的补码,真正的补码是1 1000 0000 0000 0000 0000 0000 0000 0000,溢出。

所以带符号32位int类型整数为-2147483648~2147483647

在计算机系统中,补码(Two's Complement)表示法是处理有符号整数的标准方式。对于32系统,补码表示法允许我们使用32二进制数来表示从-2^31到2^31-1的整数范围。在这个范围内的数值包括了2^32个不同的整数。 参考资源链接:[补码表示范围与数制详解](https://wenku.csdn.net/doc/488bc6isfu) 要理解32补码表示法,首先要了解补码的基本原理。对于一个负数的补码表示,需要取其正数的二进制表示(原码),然后对每一进行取反(得到反码),最后加1得到补码。例如,-1在32补码表示中是:首先1的原码是***,取反后变成***,加1后得到***,这就是-1的32补码表示。 补码表示法的优点在于简化了计算机硬件中的加减运算电路。使用补码,加法和减法可以使用相同的加法器来完成,无需额外的硬件支持,这对于计算机的运算速度和效率提升有着直接的影响。例如,在进行减法操作时,可以通过加上负数的补码来实现,这样就无需单独设计一个减法器。 此外,补码表示法还解决了二进制原码表示法中无法直接表示的+0和-0的问题,因为在补码表示中,+0和-0拥有相同的表示(即***)。同时,补码也使得表示负数时的范围是连续的,这在进行算术运算和程序设计中是非常有用的。 对于初学者来说,理解补码表示法是非常重要的,因为它直接关联到计算机硬件和软件对数值的处理方式。要想深入了解补码的原理以及它如何在计算机内部工作的更多细节,建议参考《补码表示范围与数制详解》一书。这本书不仅详尽地解释了补码的表示原理和范围,还深入探讨了与数制、定点运算和浮点运算等相关的计算机基础概念。 参考资源链接:[补码表示范围与数制详解](https://wenku.csdn.net/doc/488bc6isfu)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值