朴素贝叶斯实战

本文深入介绍了朴素贝叶斯分类的原理与应用,包括贝叶斯公式、条件独立性假设,以及在垃圾邮件识别、平衡称问题和手写体识别中的实际案例。通过实例展示了数据处理、训练过程和代码实现,揭示了朴素贝叶斯分类器的高效性和实用性。
摘要由CSDN通过智能技术生成

朴素贝叶斯分类

背景知识

贝叶斯分类:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。

先验概率: 根据以往经验和分析得到的概率。我们用𝑃(𝑌)来代表在没有训练数据前假设𝑌拥有的初始概率。

后验概率: 根据已经发生的事件来分析得到的概率。以𝑃(𝑌|𝑋)代表假设𝑋 成立的情下观察到𝑌数据的概率,因为它反映了在看到训练数据𝑋 后𝑌成立的置信度。

联合概率: 联合概率是指在多元的概率分布中多个随机变量分别满足各自条件的概率。𝑋与𝑌的联合概率表示为𝑃 𝑋, 𝑌 、 𝑃(𝑋𝑌) 或𝑃(𝑋 ∩ 𝑌) 。假设𝑋和𝑌都服从正态分布,那么𝑃(𝑋 < 5, 𝑌 < 0)就是一个联合概率,表示 𝑋 < 5, 𝑌 < 0两个条件同时成立的概率。表示两个事件共同发生的概率。

贝叶斯公式

P ( Y ∣ X ) = P ( X , Y ) P ( X ) = P ( X ∣ Y ) P ( Y ) P ( X ) P(Y \mid X)=\frac{P(X, Y)}{P(X)}=\frac{P(X \mid Y) P(Y)}{P(X)} P(YX)=P(X)P(X,Y)=P(X)P(XY)P(Y)

朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布 𝑃(𝑋, 𝑌),然后求得后验概率分布𝑃(𝑌|𝑋)。具体来说,利用训练数据学习𝑃(𝑋|𝑌)和𝑃(𝑌)的估计,得到联合概率分布:𝑃(𝑋, 𝑌)=𝑃(𝑋|𝑌) 𝑃(𝑌)

朴素贝叶斯原理

1.朴素贝叶斯法是典型的生成学习方法。

生成方法由训练数据学习联合概率分布 𝑃(𝑋, 𝑌),然后求得后验概率分布𝑃(𝑌|𝑋)。具体来说,利用训练数据学习𝑃(𝑋|𝑌)和𝑃(𝑌)的估计,得到

联合概率分布:𝑃(𝑋, 𝑌)=𝑃(𝑌)𝑃(𝑋|𝑌)

概率估计方法可以是极大似然估计或贝叶斯估计。

2.朴素贝叶斯法的基本假设是条件独立性。

P ( X = x ∣ Y = c k ) = P ( x ( 1 ) , ⋯   , x ( n ) ∣ y k ) = ∏ j = 1 n P ( x ( j ) ∣ Y = c k ) \mathrm{P}\left(\mathrm{X}=\mathrm{x} \mid \mathrm{Y}=\mathrm{c}_{\mathrm{k}}\right)=\mathrm{P}\left(\mathrm{x}^{(1)}, \cdots, \mathrm{x}^{(\mathrm{n})} \mid \mathrm{y}^{\mathrm{k}}\right)=\prod_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{x}^{(\mathrm{j})} \mid \mathrm{Y}=\mathrm{c}_{\mathrm{k}}\right) P(X=xY=ck)=P(x(1),,x(n)yk)=j=1nP(x(j)Y=ck)

c k \mathrm{c}_{\mathrm{k}} ck​代表类别,k代表类别个数。基于独立性假设,贝叶斯公式可重写为

P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c \mid \mathbf{x})=\frac{P(c) P(\mathbf{x} \mid c)}{P(\mathbf{x})}=\frac{P(c)}{P(\mathbf{x})} \prod_{i=1}^{d} P\left(x_{i} \mid c\right) P(cx)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)

这是一个较强的假设。由于这一假设,模型包含的条件概率的数量大为减少,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。

3.朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测

P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c \mid \mathbf{x})=\frac{P(c) P(\mathbf{x} \mid c)}{P(\mathbf{x})}=\frac{P(c)}{P(\mathbf{x})} \prod_{i=1}^{d} P\left(x_{i} \mid c\right) P(cx)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)

由于对所有类别来说分母P(x)相同,因此我们的目标是要找到一个最大的联合分布概率,即:

h n b ( x ) = argmax ⁡ c ∈ y P ( c ) ∏ i = 1 d P ( x i ∣ c ) h_{n b}(\mathbf{x})=\underset{c \in y}{\operatorname{argmax}}P(c) \prod_{i=1}^{d} P\left(x_{i} \mid c\right) hnb(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值