题目:For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 – the black hole of 4-digit numbers. This number is named Kaprekar Constant.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
题型分类:字符串处理;字符串和int转换;
题目大意:
输出一个数变成卡普雷卡常数(6174)的过程。
代码如下:
#include<bits/stdc++.h>
using namespace std;
bool cmp(char a, char b){
return a > b;
}
int main(){
string N;
cin>>N;
N.insert(0, 4 - N.size(), '0');
do{
string a = N, b = N;
sort(a.begin(), a.end(), cmp);
sort(b.begin(), b.end());
int res = stoi(a) - stoi(b);
N = to_string(res);
N.insert(0, 4 - N.size(), '0');
cout<<a<<" - "<<b<<" = "<<N<<endl;
}while(N != "0000" && N != "6174");
return 0;
}
笔记:
1、stoi(字符串,起始位置,n进制),将 n 进制的字符串转化为十进制
2、to_string() 将数字常量转换为字符串
3、str.insert(0,5,c) 在原串下标为0的字符前插入5个字符c