DP专题 1
通解
dp数组的含义以及下标的意义
递推公式
dp数组如何初始化
遍历顺序
打印dp树
1.斐波那契数列
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
dp数组的含义:用来保存递归的结果;下标的意义:dp[i]第i个值
递推公式:dp[i]=dp[i-1]+dp[i-2]
dp数组如何初始化:dp[0]=0;dp[1]=1
遍历顺序:由于dp[i]依赖dp[i-1]和dp[i-2],因此顺序为从前往后
打印dp树
递归法
class Solution:
def fib(self, n: int) -> int:
if n<2:
return n # 递归的奥妙
return self.fib(n-1)+self.fib(n-2)
公式解析
class Solution:
def fib(self, n: int) -> int:
if n<2:
return n
front,later=0,1 #把递推公式拆开写
for _ in range(2,n+1):
cur=front+later
front,later=later,cur
return cur
2.爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
dp数组的含义:dp[5]上五个台阶的方法=dp[4]+dp[3];下标的意义:到第5个台阶
递推公式:dp[i]=dp[i-1]+dp[i-2]
dp数组如何初始化:dp[0]=0;dp[1]=1;dp[2]=2
遍历顺序:由于dp[i]依赖dp[i-1]和dp[i-2],因此顺序为从前往后
打印dp树
class Solution:
def climbStairs(self, n: int) -> int:
if n<2:
return n
dp=[0]*(n+1) #创建长度为n+1的列表,初始值全为0
dp[1]=1
dp[2]=2 #斐波那契是0112348,本题是012358,上2个台阶有两种方法
for i in range (3,n+1):
dp[i]=dp[i-1]+dp[i-2]
return dp[n]
3.使用最小数爬楼梯
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
(0或1开始爬,爬1或2,并支付费用;到楼顶就是超出)
请你计算并返回达到楼梯顶部的最低花费。
dp数组的含义:dp[i]表示支付的最少费用;下标的意义:到第i个台阶
递推公式:dp[i]=dp[i-1]+cost[i-1]或者dp[i]=dp[i-2]+cost[i-2]
dp数组如何初始化:dp[0]=0;dp[1]=0 “从下标为 0 或下标为 1 的台阶开始爬楼梯”上来不要钱,往上跳要交钱
遍历顺序:由于dp[i]依赖dp[i-1]或者dp[i-2]
打印dp树
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
dp=[0]*(len(cost)+1)
dp[0]=0
dp[1]=0
for i in range(2,len(cost)+1): #从2到len(cost)
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]) #爬到i-1(i-2)加上从i-1(i-2)上跳,两个方面考量花费最小
return dp[len(cost)]