DP专题 2
通解
dp数组的含义以及下标的意义
递推公式
dp数组如何初始化
遍历顺序
打印dp树
1.不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
递归
#递归超时
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m==1 or n==1:
return 1
return self.uniquePaths(m-1,n)+self.uniquePaths(m,n-1)
动态规划
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp=[[0]*n for _ in range(m)]
#dp[0][0]也是1
for i in range (m):
dp[i][0]=1
for j in range(n):
dp[0][j]=1
for i in range(1,m):
for j in range(1,n):
dp[i][j]=dp[i-1][j]+dp[i][j-1]
return dp[m-1][n-1]
2.不同路径Ⅱ
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
判断ob列表的值,向dp写值,每次多加个判断
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m=len(obstacleGrid)
n=len(obstacleGrid[0])
if obstacleGrid[0][0]==1 or obstacleGrid[m-1][n-1]==1:
return 0
dp=[[0]*n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0]==0:
dp[i][0]=1
else:
break
for j in range(n):
if obstacleGrid[0][j]==0:
dp[0][j]=1
else:
break
for i in range(1,m):
for j in range (1,n):
if obstacleGrid[i][j]==1:
continue
else:
dp[i][j]=dp[i-1][j]+dp[i][j-1]
return dp[m-1][n-1]