DP专题 2

DP专题 2



通解

dp数组的含义以及下标的意义
递推公式
dp数组如何初始化
遍历顺序
打印dp树

1.不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

递归

#递归超时
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        if m==1 or n==1:
            return 1
        return self.uniquePaths(m-1,n)+self.uniquePaths(m,n-1)

动态规划

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp=[[0]*n for _ in range(m)]
        #dp[0][0]也是1
        for i in range (m):
            dp[i][0]=1
        for j in range(n):
            dp[0][j]=1
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j]=dp[i-1][j]+dp[i][j-1]
        
        return dp[m-1][n-1]

2.不同路径Ⅱ

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

判断ob列表的值,向dp写值,每次多加个判断

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m=len(obstacleGrid)
        n=len(obstacleGrid[0])
        if obstacleGrid[0][0]==1 or obstacleGrid[m-1][n-1]==1:
            return 0 
        dp=[[0]*n for _ in range(m)]
    
        for i in range(m):
            if obstacleGrid[i][0]==0:
                dp[i][0]=1
            else: 
                break

        for j in range(n):
            if obstacleGrid[0][j]==0:
                dp[0][j]=1
            else: 
                break
                        
        for i in range(1,m):
            for j in range (1,n):
                if obstacleGrid[i][j]==1:
                    continue
                else:
                    dp[i][j]=dp[i-1][j]+dp[i][j-1]
        return dp[m-1][n-1]




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值