本题要求编写程序,计算 2 个有理数的和、差、积、商。
输入格式:
输入在一行中按照
a1/b1 a2/b2
的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为 0。输出格式:
分别在 4 行中按照
有理数1 运算符 有理数2 = 结果
的格式顺序输出 2 个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式k a/b
,其中k
是整数部分,a/b
是最简分数部分;若为负数,则须加括号;若除法分母为 0,则输出Inf
。题目保证正确的输出中没有超过整型范围的整数。
分析:主要需要一个自定义函数根据a1和b1的 关系进行输出,即func:
1、首先判断a1和b1是否为0,可提前结束
2、判断a1和b1是否异号,异号输出“(-”否则“”
3、取a1和b1的绝对值,获得整数部分,整数非0就输出
4、根据a1%b1==0判断是否纯整数,如果是根据flag标志输出反括号,并return
5、如果整数部分非0,输出空格,求a1和b1的最大公约数,轻松求得最终结果
#include<bits/stdc++.h>
#define MAX 100010
using namespace std;
long long gcd(long long a,long long b)
{
long long t=0;
while(b)
{
t=a%b;
a=b;
b=t;
}
return a;
}
void func(long long m,long long n)
{
int flag=0;//为0表示正数 反之负数
if(m==0||n==0)
{
printf("%s",n==0?"Inf":"0");//判断分子父母为0的情况 提前结束
return ;
}
if((m<0&&n>0)||(m>0&&n<0))
flag=1;//mn异号
m=abs(m),n=abs(n);
long long x=(m/n);
printf("%s",flag?"(-":"");//mn异号即负数才需要括号
if(x)//输出非0整数部分
cout<<x;
if(m%n==0)//纯整数 无小数部分
{
if(flag)
cout<<")";//异号才对应有反括号
return;
}
if(x)
cout<<" ";
//接下来计算小数部分
long long gc=gcd(m,n); //计算最大公因数
printf("%lld/%lld%s",(m-x*n)/gc,n/gc,flag?")":"");
}
int main()
{
long long a,b,c,d;
scanf("%lld/%lld %lld/%lld",&a,&b,&c,&d);
func(a,b);cout<<" + ";func(c,d);cout<<" = ";func(a*d+b*c,b*d);cout<<endl;
func(a,b);cout<<" - ";func(c,d);cout<<" = ";func(a*d-b*c,b*d);cout<<endl;
func(a,b);cout<<" * ";func(c,d);cout<<" = ";func(a*c,b*d);cout<<endl;
func(a,b);cout<<" / ";func(c,d);cout<<" = ";func(a*d,b*c);
}