中国科学院南京地理与湖泊研究所张科研究员团队联合多家单位科学家在PNAS发文:湖泊沉积物解锁长三角太湖流域可持续发展之道

中国科学院南京地理与湖泊研究所的研究团队提出新框架,通过分析长三角太湖流域百年社会-生态系统动态,发现自2000年起系统趋于良性发展,人与自然系统从紧密耦合到脱耦。研究揭示了太湖流域的社会-生态耦合转型,为可持续发展和生态文明建设提供重要见解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章简介

论文名称Transient social–ecological dynamics reveal signals of decoupling in a highly disturbed Anthro-pocene landscape(瞬态社会生态动力学揭示了高度干扰的人类景观中解耦的信号)

第一作者及通讯作者:林琪博士&张科研究员(共同一作);张科研究员&沈吉教授(共同通讯)

第一作者及通讯作者单位:中国科学院南京地理与湖泊研究所;中国科学院南京地理与湖泊研究所,南京大学

文章发表期刊:《Proceedings of the National Academy of Sciences of the United States of America》(简称:PNAS)|中科院1区Top期刊|最新影响因子:11.1)

期刊平均审稿速度:2.8个月

研究内容

        近日,中国科学院南京地理与湖泊研究所张科研究员团队、联合南京大学、法国萨瓦勃朗峰大学、荷兰皇家生态研究所、法国格勒诺布尔阿尔卑斯大学、瑞典于默奥大学、意大利米兰大学、英国南安普顿大学、南非开普敦大学等多家单位的科学家在PNAS发文,提出了从历史演化的视角研究湖泊流域人-地系统转型的新框架。

        这项研究不仅深化了对人-地系统转型过程的理论认知,而且通过对我国长三角地区太湖流域近百年来社会-生态系统演化动态和模式的案例剖析,展示了人与自然系统如何从紧密耦合到逐渐脱耦的转型动态。研究指出长三角太湖流域自2000年左右社会经济发展和生态环境变化进入良性发展阶段,区域生态文明建设稳中向好。

        研究成果以Transient social-ecological dynamics reveal signals of decoupling in a highly disturb- ed Anthropocene landscape为题,中国科学院南京地理与湖泊研究所林琪博士、张科研究员为论文共同第一作者,张科研究员、南京大学沈吉教授为论文共同通讯作者。

图片

图1. 湖泊流域社会-生态耦合系统长期演变及转型动态研究框架

        科学评估人-地关系的演化及转型动态是地理学研究的核心命题之一,也是实现可持续发展目标(SDGs)和联合国生态恢复十年计划的重要理论支撑。当前人-地关系的研究面临着诸多难题,多数相关研究仅针对社会或者生态单一的子系统开展,缺乏表征复杂系统变化的综合指标来深入理解人-地耦合系统的动态;此外多数研究受限于较短的时间尺度,难以明晰复杂系统的演化轨迹和转型动态,例如系统弹性、突变及阈值、正负反馈机制等。

        针对这些挑战,研究团队提出了基于历史演化视角来研究湖泊流域社会-生态系统动态及转型的理论框架,在复杂系统理论和弹性理论的基础上,利用古-今湖沼学、历史文献分析、模型模拟等多种研究手段,构建了基于系统变率为主的表征社会-生态系统动态的指标体系,进而揭示人-地系统在不同时空尺度下的互馈关系及转型动态。通过对太湖沉积物中古DNA的分析,结合多指标的湖泊沉积记录和流域社会经济数据,揭示了太湖流域在过去数百年间社会-生态耦合系统演化与转型的特征、并进一步对该地区人-地系统的可持续发展路径进行了系统的评估。

图片

图2.太湖流域社会-生态系统互馈关系与转型动态(transient dynamics)(A:系统关键要素变化速率与社会-生态耦合指数时间序列;B:社会子系统综合变率与与生态子系统综合变率的散点关系;C-E:流域土地利用生态足迹、水资源生态足迹、太湖水质与人均GDP随时间变化的关系)

        研究发现,太湖流域过去百年来经历了两次重大的社会-生态转型。最初,太湖流域以其高产且稳定的农业生态系统而闻名,社会-生态系统呈现出较低的耦合程度,维持在一个可持续的动态平衡模式中;然而从20世纪50年代开始,随着社会经济的迅猛发展,生态环境退化的问题逐渐加剧,尤其是在1960至1980年代期间,流域的土壤侵蚀、湖泊富营养化以及水生和陆生生态系统的退化出现了前所未有的加速及突变,系统达到了一个新的状态;进入21世纪后,太湖流域社会-生态系统显示出明显的脱耦信号,社会经济发展与生态环境改善呈现出一种“双赢”局面,这一结果得到了区域土地利用和水资源生态足迹的支持,表明社会-生态系统可能已经进入了变革性的可持续转型阶段。这一发现对太湖流域乃至整个长三角地区的可持续发展和生态文明建设具有重要意义。

        该研究受到国家重点研发计划、国家自然科学基金重点项目等资助。

文章引用

文献引用:Lin Q, Zhang K, Giguet-Covex C, Arnaud F, McGowan S, Gielly L, Capo E, Huang S, Ficetola GF, Shen J, Dearing JA, Meadows ME. Transient social-ecological dynamics reveal signals of decoupling in a highly disturbed Anthropocene landscape. Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2321303121. doi:10.1073/pnas.2321303121. Epub 2024 Apr 19. PMID: 38640342; PMCID: PMC11046650.

信息来源:中国科学院南京地理与湖泊研究所官网

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353 - 测试集:963 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经学研究: 支持构建神经元定位分析工具,助力脑学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值